Chapter 15  The WM2 Algorithm, the NB Algorithm 
The NB Algorithm to solve Problem 1 can be understood by considering the following data where 
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 can be ignored because there is simply no hope to have any substring whose edit distance with 
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 can be less than or equal to 
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.  So, our question is:  How can we determine a substring of 
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The Algorithms discussed in this chapter belong to a class of approximate string matching algorithms based upon the filtering concept.  That is, the algorithm is divided into two stages:  the filtering stage and the checking stage.  In the filtering stage, we eliminate regions of the text string 
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 which cannot contain solutions.  In the checking stage, we check whether there are solutions in all of the regions which remain.   


In the previous chapters dealing with Problem 1 of the approximate string matching, no algorithm involves opening windows.  In the algorithms introduced in this chapter, windows are opened.  They are opened in the checking stage.
Section 15.1  Rule A3 in the Filtering Stage 
In this section, we shall introduce a mechanism to perform the filtering.  Let us consider the case where we are given two strings 
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The above discussion is based upon the following theorem proved by Navarro and Baeza-Yates in 1999.  
Theorem 15.1-1 
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Let 
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Proof:
We prove by contradiction.  Suppose there does not exist one piece 
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A special case of the above theorem in which 
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 was proved in [WM92].


The above theorem will be our Rule A3 for solving Problem 1.  To use Rule A3, we may simply let 
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Example 15.1-1  The First Example of Rule A3 

Let 
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Example 15.1-2  The Second Example of Rule A3

Let 
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Example 15.1-3  The Third Example of Rule A3

Let 
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Note that for every scheme of dividing 
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We must be careful about the following points:   

  (1)  For any dividing of 
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(2) If for some dividing, one piece of 
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(3) If the dividing of 
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 is such that one piece contains only one character, that piece will very likely appear exactly in 
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 and thus a further checking will be performed.  To avoid this kind of trouble, it is advised to divide 
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We may use Rule A3 in the following way to solve Problem 1.  
Rule A3 for Solving Problem 1

For a given pattern 
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 which contain pieces of 
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 and ignore all windows which do not contain any piece of 
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.  
In the above, we discussed the filtering stage.  The next stage is the checking stage in which windows are opened.  We of course have to know the appropriate size and location of a window.  This will be discussed in the next section.
Section 15.2  The Checking Stage of the WM2Algorithm.
Suppose that we are given two strings 
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 can be neither too small nor too large.  In fact, we will use Rule A2 which was presented in Section 11.5..

Rule A2 
Given two strings 
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Suppose that, by using Rule A3, we have found some substring which may contain a solution, we may now open a window containing this substring. Based upon Rule A2, we conclude that the window size should be 
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 as shown in Fig. 15.2-1.
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Fig. 15.2-1 The window size for the BN Algorithm

Our next point to note is the exact location of the window.  As we indicated before, the window must contain a substring 
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 EMBED Equation.3  [image: image140.wmf]

Let us consider the following case:
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Assume that 
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For this case, although the window contains 
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The window now is 
[image: image161.wmf]cacgtg

T

W

=

=

)

8

,

3

(

.  It can be seen that the solution ending at 
[image: image162.wmf]7

t

 is in this window.  If we use Seller’s Algorithm on this window 
[image: image163.wmf]W

and 
[image: image164.wmf]P

, a solution ending at 
[image: image165.wmf]7

t

 can be found. 

The reader may now appreciate that the WM2 Algorithm as a filtering algorithm because some windows are not opened.  If we do not Rule A3 to filter out many regions, we would have to open much more windows as we pointed out before.


Let 
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 be a substring in 
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For a  
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Procedure A for the Opening of a Window in the WM2 Algorithm

Procedure A
Step 1.  Let 
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Step 3.  Let 
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Step 4.  Extend 
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Fig. 15.2-1 illustrates the resulting window.
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Fig. 15.2-1 An illustration of Procedure A


It is understood here that if the alignment causes the window to be out of the boundary, as shown in Fig. 15.2-2, that widow is to be ignored because the window cannot cover the entire pattern 
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.
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Fig. 15.2-2  An out of the boundary window

TheWM2 Algorithm works as follows:

Algorithm 15.1  The WM2 Algorithm for Solving Problem 1
Input: A text string 
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Output:  Every location 
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Step 1:  Divide 
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Step 2:  Check whether any 
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Step 3:  Otherwise, for every 
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Step 4.  Apply any algorithm which solves Problem 1 on 
[image: image216.wmf]W

 and 
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 and  report the result.
Example 15.2-1 

Consider the following set of data where 
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Let 
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From this window, we can see that locations 5 and 6 are solutions.
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In this window, location 6 is a solution.

3.  Window 3: 
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No solution for Problem 1 can be found in this window.


Conclusion:  The solution is 
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Example 15.2-2
Consider the following data with 
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We divide 
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Section 15.3  The NB Algorithm


In the above, the WM2 Algorithm was introduced.  In the WM2 Algorithm, the pattern is divided into 
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 pieces.  It can be imagined that each piece will be relatively small.  Thus there is a high probability that many pieces may exactly appear in the text string.  For each such a case, we have to open a window to check whether the pattern appears in the window within the error bound.  This may be quite time-consuming.  

To understand the NB Algorithm, we need two lemmas based upon Theorem 15.1-1.

Lemma 15.3-1
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Lemma 15.3-2 
Let 
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 and 
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Example 15.3-1

Consider 
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(2) We find only 
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 appears exactly in 
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 and it appears twice.
(3) We open two windows with size 
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For the NB Algorithm, we proceed as follows:

(1) Merge 
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(3) By using Lemma 15.3-2, we may ignore 
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(4) To test 
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In fact, in this example, 
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P

 fails the test and thus we may terminate with no solution.  We can see that the NB Algorithm is less time-consuming in this example.

Algorithm 15.2  The NB Algorithm for Solving Problem 1
Input: A text string 
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Step 3.1 If there exists a 
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Step 3.3.  If neither 
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Example 15.3-2

Let the input data as follows:
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Example 15.3.-3

Let the input data as follows:
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(6)  Terminate and report no solution.
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