Chapter 15 The WM2 Algorithm, the NB Algorithm
The NB Algorithm to solve Problem 1 can be understood by considering the following data where
[image: image1.wmf]bbbbbbbbbb

accgtctgtb

T

=

,
[image: image2.wmf]cgcc

P

=

 and
[image: image3.wmf]1

=

k

. We can easily see that the substring
[image: image4.wmf]b

bb

L

of
[image: image5.wmf]T

 can be ignored because there is simply no hope to have any substring whose edit distance with
[image: image6.wmf]P

 can be less than or equal to
[image: image7.wmf]k

. So, our question is: How can we determine a substring of
[image: image8.wmf]T

 can be ignored.

The Algorithms discussed in this chapter belong to a class of approximate string matching algorithms based upon the filtering concept. That is, the algorithm is divided into two stages: the filtering stage and the checking stage. In the filtering stage, we eliminate regions of the text string
[image: image9.wmf]T

 which cannot contain solutions. In the checking stage, we check whether there are solutions in all of the regions which remain.

In the previous chapters dealing with Problem 1 of the approximate string matching, no algorithm involves opening windows. In the algorithms introduced in this chapter, windows are opened. They are opened in the checking stage.
Section 15.1 Rule A3 in the Filtering Stage
In this section, we shall introduce a mechanism to perform the filtering. Let us consider the case where we are given two strings
[image: image10.wmf]A

 and
[image: image11.wmf]B

. We divide
[image: image12.wmf]B

 into two pieces:
[image: image13.wmf]1

B

 and
[image: image14.wmf]2

B

. Assume that
[image: image15.wmf]1

)

,

(

£

B

A

ED

. We claim that either
[image: image16.wmf]1

B

, or
[image: image17.wmf]2

B

, will appear in
[image: image18.wmf]A

 exactly. Assume the otherwise, let the substring in
[image: image19.wmf]A

 which has the shortest edit distance with
[image: image20.wmf]1

B

(
[image: image21.wmf]2

B

) be denoted as
[image: image22.wmf])

(

2

1

A

A

.
[image: image23.wmf]1

)

,

(

1

1

³

B

A

ED

 and
[image: image24.wmf]1

)

,

(

2

2

³

B

A

ED

. Thus it takes at least 1 step to transform
[image: image25.wmf])

(

2

1

B

B

 into
[image: image26.wmf])

(

2

1

A

A

. Since
[image: image27.wmf]1

B

 and
[image: image28.wmf]2

B

 are non-overlapping,
[image: image29.wmf]1

)

,

(

>

B

A

ED

 which is contradictory to our assumption that
[image: image30.wmf]1

)

,

(

£

B

A

ED

.

The above discussion is based upon the following theorem proved by Navarro and Baeza-Yates in 1999.
Theorem 15.1-1
[image: image31.wmf][

]

99

NB

Let
[image: image32.wmf]A

 and
[image: image33.wmf]B

 be two strings. Let
[image: image34.wmf]B

 be divided into
[image: image35.wmf]j

 pieces
[image: image36.wmf]j

B

B

B

,

,

,

2

1

L

. If
[image: image37.wmf]k

B

A

ED

£

)

,

(

, then there exist at least one piece
[image: image38.wmf]i

B

 and a substring
[image: image39.wmf]i

A

 in
[image: image40.wmf]A

 such that
[image: image41.wmf]ú

û

ú

ê

ë

ê

£

j

k

B

A

ED

i

i

)

,

(

.
Proof:
We prove by contradiction. Suppose there does not exist one piece
[image: image42.wmf]i

B

 and a substring
[image: image43.wmf]i

A

 in
[image: image44.wmf]A

 such that
[image: image45.wmf]ú

û

ú

ê

ë

ê

£

j

k

B

A

ED

i

i

)

,

(

. Then for every
[image: image46.wmf]i

B

, let
[image: image47.wmf]i

A

 be the substring in
[image: image48.wmf]A

 which has the shortest edit distance with
[image: image49.wmf]i

B

.
[image: image50.wmf]ú

û

ú

ê

ë

ê

>

j

k

B

A

ED

i

i

)

,

(

. It thus takes at least more than
[image: image51.wmf]ú

û

ú

ê

ë

ê

j

k

 steps to transform
[image: image52.wmf]i

B

 into
[image: image53.wmf]i

A

. Since there are
[image: image54.wmf]j

[image: image55.wmf]i

B

’s, we conclude that
[image: image56.wmf]k

B

A

ED

>

)

,

(

 which is contradictory to our assumption that
[image: image57.wmf]k

B

A

ED

£

)

,

(

. Thus then there exist at least one piece
[image: image58.wmf]i

B

 and a substring
[image: image59.wmf]i

A

 in
[image: image60.wmf]A

 such that
[image: image61.wmf]ú

û

ú

ê

ë

ê

£

j

k

B

A

ED

i

i

)

,

(

.

A special case of the above theorem in which
[image: image62.wmf]1

+

=

k

j

 was proved in [WM92].

The above theorem will be our Rule A3 for solving Problem 1. To use Rule A3, we may simply let
[image: image63.wmf]1

+

=

k

j

. This was pointed out in [WM92]. Thus we shall call the algorithm based upon
[image: image64.wmf]1

+

=

k

j

 the WM2 Algorithm because in Chapter 13, we also introduced the WM1 Algorithm.. In this case
[image: image65.wmf]0

=

ú

û

ú

ê

ë

ê

j

k

 and there will be at least one
[image: image66.wmf]i

B

 which will exactly appear in
[image: image67.wmf]A

.

Example 15.1-1 The First Example of Rule A3

Let
[image: image68.wmf]agttgca

A

=

 and
[image: image69.wmf]attgca

B

=

. It can be seen that
[image: image70.wmf]1

)

,

(

=

B

A

ED

. Thus
[image: image71.wmf]1

=

k

. Let
[image: image72.wmf]2

1

=

+

=

k

j

. We divide
[image: image73.wmf]attgca

B

=

 into two pieces, say
[image: image74.wmf]att

B

=

1

 and
[image: image75.wmf]gca

B

=

2

. We can see that
[image: image76.wmf]gca

B

=

2

 exactly appears in
[image: image77.wmf]agttgca

A

=

.

Example 15.1-2 The Second Example of Rule A3

Let
[image: image78.wmf]aatgga

A

=

 and
[image: image79.wmf]attgca

B

=

. Suppose we divide
[image: image80.wmf]attgca

B

=

 as we did in Example 15.1-1., namely
[image: image81.wmf]att

B

=

1

 and
[image: image82.wmf]gca

B

=

2

. We can see that neither
[image: image83.wmf]1

B

 nor
[image: image84.wmf]2

B

 exactly in
[image: image85.wmf]aatgga

A

=

, we may conclude that
[image: image86.wmf]1

)

,

(

>

B

A

ED

.

Example 15.1-3 The Third Example of Rule A3

Let
[image: image87.wmf]a

actgctaatg

A

=

,
[image: image88.wmf]agtaatga

B

=

. It can be seen that
[image: image89.wmf]3

)

,

(

=

B

A

ED

. In this case,
[image: image90.wmf]3

=

k

. Let
[image: image91.wmf]4

1

=

+

=

k

j

. We divide
[image: image92.wmf]agtaatga

B

=

 into four pieces: ag, ta, at and ga. We can see that the last three pieces all appear in
[image: image93.wmf]a

actgctaatg

A

=

.

Note that for every scheme of dividing
[image: image94.wmf]agtaatga

B

=

 into four pieces, there must be one piece which appears exactly in
[image: image95.wmf]a

actgctaatg

A

=

. For example, we may divide
[image: image96.wmf]agtaatga

B

=

 into agt, aat, g and a. Again, we can see that the last three pieces all appear exactly in
[image: image97.wmf]A

.

We must be careful about the following points:

 (1) For any dividing of
[image: image98.wmf]B

 into
[image: image99.wmf]1

+

=

k

j

 pieces, if no piece of
[image: image100.wmf]B

 exactly appears in
[image: image101.wmf]A

, we are sure that
[image: image102.wmf]k

B

A

ED

>

)

,

(

.

(2) If for some dividing, one piece of
[image: image103.wmf]B

 exactly appears in
[image: image104.wmf]A

,, we cannot conclude that
[image: image105.wmf]k

B

A

ED

£

)

,

(

. Further checking is still needed.

(3) If the dividing of
[image: image106.wmf]B

 is such that one piece contains only one character, that piece will very likely appear exactly in
[image: image107.wmf]A

 and thus a further checking will be performed. To avoid this kind of trouble, it is advised to divide
[image: image108.wmf]B

 into equal sized pieces.

We may use Rule A3 in the following way to solve Problem 1.
Rule A3 for Solving Problem 1

For a given pattern
[image: image109.wmf]P

, we divide it into
[image: image110.wmf]1

+

=

k

j

 pieces. If none of these pieces exactly appears in the given text
[image: image111.wmf]T

, we claim that there is no solution for Problem 1 with error bound
[image: image112.wmf]k

in this case. If some pieces exactly appear in
[image: image113.wmf]T

, we open windows in
[image: image114.wmf]T

 which contain pieces of
[image: image115.wmf]P

 and ignore all windows which do not contain any piece of
[image: image116.wmf]P

.
In the above, we discussed the filtering stage. The next stage is the checking stage in which windows are opened. We of course have to know the appropriate size and location of a window. This will be discussed in the next section.
Section 15.2 The Checking Stage of the WM2Algorithm.
Suppose that we are given two strings
[image: image117.wmf]A

 and
[image: image118.wmf]B

 with sizes
[image: image119.wmf]n

 and
[image: image120.wmf]m

 respectively, if
[image: image121.wmf]k

B

A

ED

£

)

,

(

, the difference between
[image: image122.wmf]n

 and
[image: image123.wmf]m

 can be neither too small nor too large. In fact, we will use Rule A2 which was presented in Section 11.5..

Rule A2
Given two strings
[image: image124.wmf]A

 and
[image: image125.wmf]B

 with sizes
[image: image126.wmf]n

 and
[image: image127.wmf]m

 respectively, if
[image: image128.wmf]k

B

A

ED

£

)

,

(

,
[image: image129.wmf]k

m

n

k

m

+

£

£

-

.

Suppose that, by using Rule A3, we have found some substring which may contain a solution, we may now open a window containing this substring. Based upon Rule A2, we conclude that the window size should be
[image: image130.wmf]k

m

2

+

 as shown in Fig. 15.2-1.

[image: image131.emf]m k

k

Fig. 15.2-1 The window size for the BN Algorithm

Our next point to note is the exact location of the window. As we indicated before, the window must contain a substring
[image: image132.wmf]i

T

 which exactly matches with a piece
[image: image133.wmf]i

P

 of
[image: image134.wmf]P

. Our window should thus be located in such a way that
[image: image135.wmf]i

T

 is aligned with
[image: image136.wmf]i

P

[image: image137.wmf] To prove this, we show that an error may occur if
[image: image138.wmf]i

T

 is not aligned with
[image: image139.wmf]i

P

 EMBED Equation.3 [image: image140.wmf]

Let us consider the following case:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	T
	=
	t
	g
	c
	a
	c
	g
	t
	g
	a
	a

	P
	=
	a
	c
	c
	t
	
	
	
	
	
	

Assume that
[image: image141.wmf]1

=

k

. We can see that there is a solution ending at
[image: image142.wmf]7

t

.

Let
[image: image143.wmf]2

1

=

+

=

k

j

. Suppose we divide
[image: image144.wmf]acct

P

=

 into two pieces, namely
[image: image145.wmf]ac

P

=

1

 and
[image: image146.wmf]ct

P

=

2

. Since
[image: image147.wmf]ac

P

=

1

 appears exactly in
[image: image148.wmf]T

, we know that there is hope for a solution. As we indicated before, we need to open a window whose size is
[image: image149.wmf]6

2

4

=

+

. Consider the window
[image: image150.wmf]tgcacg

T

W

=

=

)

6

,

1

(

 which contains
[image: image151.wmf]ac

P

=

1

 and suppose pattern
[image: image152.wmf]P

 is aligned with
[image: image153.wmf]W

 as below:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	T
	=
	t
	g
	c
	a
	c
	g
	t
	g
	a
	a

	P
	=
	
	a
	c
	c
	t
	
	
	
	
	

For this case, although the window contains
[image: image154.wmf]ac

P

=

1

,
[image: image155.wmf]ac

P

=

1

 is not aligned with
[image: image156.wmf]ac

 in the window. For this window and the location of
[image: image157.wmf]P

, actually no solution can be found. Let us now align
[image: image158.wmf]ac

P

=

1

 exactly with the
[image: image159.wmf]ac

 in
[image: image160.wmf]T

 as shown below:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	T
	=
	t
	g
	c
	a
	c
	g
	t
	g
	a
	a

	P
	=
	
	
	
	a
	c
	c
	t
	
	
	

The window now is
[image: image161.wmf]cacgtg

T

W

=

=

)

8

,

3

(

. It can be seen that the solution ending at
[image: image162.wmf]7

t

 is in this window. If we use Seller’s Algorithm on this window
[image: image163.wmf]W

and
[image: image164.wmf]P

, a solution ending at
[image: image165.wmf]7

t

 can be found.

The reader may now appreciate that the WM2 Algorithm as a filtering algorithm because some windows are not opened. If we do not Rule A3 to filter out many regions, we would have to open much more windows as we pointed out before.

Let
[image: image166.wmf]i

T

 be a substring in
[image: image167.wmf]T

 which is identical to a piece
[image: image168.wmf]i

P

. Since we know that if in a window
[image: image169.wmf]W

 containing
[image: image170.wmf]i

T

,
[image: image171.wmf]i

T

 is not aligned with
[image: image172.wmf]i

P

, this window may miss a solution, we conclude that for any window
[image: image173.wmf]W

 containing
[image: image174.wmf]i

T

,
[image: image175.wmf]i

T

 must be aligned with
[image: image176.wmf]i

P

.

For a
[image: image177.wmf]i

P

 which appears in
[image: image178.wmf]T

, we construct a window by the following procedure:
Procedure A for the Opening of a Window in the WM2 Algorithm

Procedure A
Step 1. Let
[image: image179.wmf]i

T

 be a substring in
[image: image180.wmf]T

 which is identical to
[image: image181.wmf]i

P

.
Step 2. Align
[image: image182.wmf]i

T

 in
[image: image183.wmf]T

 with
[image: image184.wmf]i

P

 in
[image: image185.wmf]P

.

Step 3. Let
[image: image186.wmf]S

 be the substring in
[image: image187.wmf]T

 which is aligned with
[image: image188.wmf]P

 by Step 2.

Step 4. Extend
[image: image189.wmf]S

 in
[image: image190.wmf]T

[image: image191.wmf]k

 locations to the right and
[image: image192.wmf]k

 locations to the left. The resulting substring is window
[image: image193.wmf]W

.

Fig. 15.2-1 illustrates the resulting window.

[image: image194.emf]m k

k

T

i

P

i

S

P

W

Fig. 15.2-1 An illustration of Procedure A

It is understood here that if the alignment causes the window to be out of the boundary, as shown in Fig. 15.2-2, that widow is to be ignored because the window cannot cover the entire pattern
[image: image195.wmf]P

.

[image: image196.emf]T

P

T

i

P

i

k k

W

T

Fig. 15.2-2 An out of the boundary window

TheWM2 Algorithm works as follows:

Algorithm 15.1 The WM2 Algorithm for Solving Problem 1
Input: A text string
[image: image197.wmf]n

t

t

t

T

L

2

1

=

, a pattern string
[image: image198.wmf]m

p

p

p

P

L

2

1

=

 and an error bound
[image: image199.wmf]k

.

Output: Every location
[image: image200.wmf]i

 in
[image: image201.wmf]T

 such that there exists a suffix of
[image: image202.wmf])

,

1

(

i

T

 whose edit distance with
[image: image203.wmf]P

 is less than or equal to
[image: image204.wmf]k

.

Step 1: Divide
[image: image205.wmf]P

 into
[image: image206.wmf]1

+

=

k

j

 pieces
[image: image207.wmf]j

P

P

P

,

,

,

2

1

L

.
Step 2: Check whether any
[image: image208.wmf]i

P

 exactly appears in
[image: image209.wmf]T

. If no
[image: image210.wmf]i

P

 exactly appears in
[image: image211.wmf]T

, declare the solution is
[image: image212.wmf]f

 and exit.

Step 3: Otherwise, for every
[image: image213.wmf]i

P

 which exactly appears in
[image: image214.wmf]T

, open a window by using Procedure
[image: image215.wmf].

A

Step 4. Apply any algorithm which solves Problem 1 on
[image: image216.wmf]W

 and
[image: image217.wmf]P

 and report the result.
Example 15.2-1

Consider the following set of data where
[image: image218.wmf]1

=

k

.

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	T
	=
	a
	c
	g
	t
	t
	g
	t
	a
	t
	t
	g
	c
	t

	P
	=
	c
	g
	t
	g
	
	
	
	
	
	
	
	
	

Let
[image: image219.wmf]2

1

=

+

=

k

j

. We divide
[image: image220.wmf]cgtg

P

=

 into
[image: image221.wmf]cg

P

=

1

 and
[image: image222.wmf]tg

P

=

2

. Both
[image: image223.wmf]1

P

 and
[image: image224.wmf]2

P

 appear exactly in
[image: image225.wmf]T

. The solution of Problem 1 can be found by opening the following windows:
1. Window 1:
[image: image226.wmf])

6

,

1

(

T

 which aligns
[image: image227.wmf]cg

P

=

1

 in
[image: image228.wmf]P

 with a
[image: image229.wmf]cg

 in
[image: image230.wmf]T

 as follows:

	
	1
	2
	3
	4
	5
	6

	T =
	a
	c
	g
	t
	t
	g

	P =
	
	c
	g
	t
	g
	

From this window, we can see that locations 5 and 6 are solutions.

2. Window 2:
[image: image231.wmf])

7

,

2

(

T

 which aligns
[image: image232.wmf]tg

P

=

2

 in
[image: image233.wmf]P

 with a
[image: image234.wmf]tg

 in
[image: image235.wmf]T

 as follows:

	2
	3
	4
	5
	6
	7

	c
	g
	t
	t
	g
	t

	
	c
	g
	t
	g
	

In this window, location 6 is a solution.

3. Window 3:
[image: image236.wmf])

12

,

7

(

T

 which aligns
[image: image237.wmf]tg

P

=

2

 in
[image: image238.wmf]P

 with a
[image: image239.wmf]tg

 in
[image: image240.wmf]T

 as follows:
	7
	8
	9
	10
	11
	12

	t
	g
	t
	t
	g
	c

	
	c
	g
	t
	g
	

No solution for Problem 1 can be found in this window.

Conclusion: The solution is
[image: image241.wmf]}

6

,

5

{

.
Example 15.2-2
Consider the following data with
[image: image242.wmf]1

=

k

.

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	T
	=
	a
	c
	g
	t
	t
	g
	t
	a
	t
	t
	g
	c
	t

	P
	=
	c
	a
	t
	c
	
	
	
	
	
	
	
	
	

We divide
[image: image243.wmf]catc

P

=

 into
[image: image244.wmf]ca

P

=

1

 and
[image: image245.wmf]tc

P

=

2

. Since neither
[image: image246.wmf]ca

P

=

1

 nor
[image: image247.wmf]tc

P

=

2

 exactly appears in
[image: image248.wmf]T

, we conclude the solution is
[image: image249.wmf]f

.

Section 15.3 The NB Algorithm

In the above, the WM2 Algorithm was introduced. In the WM2 Algorithm, the pattern is divided into
[image: image250.wmf]1

+

k

 pieces. It can be imagined that each piece will be relatively small. Thus there is a high probability that many pieces may exactly appear in the text string. For each such a case, we have to open a window to check whether the pattern appears in the window within the error bound. This may be quite time-consuming.

To understand the NB Algorithm, we need two lemmas based upon Theorem 15.1-1.

Lemma 15.3-1

Let
[image: image251.wmf]A

 and
[image: image252.wmf]B

 be two strings. Let
[image: image253.wmf]B

 be divided into
[image: image254.wmf]j

 pieces
[image: image255.wmf]j

B

B

B

,

,

,

2

1

L

. Let
[image: image256.wmf]1

2

1

j

L

B

B

B

B

L

=

 and
[image: image257.wmf]j

j

j

R

B

B

B

B

L

2

1

1

1

+

+

=

. If
[image: image258.wmf]k

B

A

ED

£

)

,

(

, then either for
[image: image259.wmf]L

B

, there exists a substring
[image: image260.wmf]L

A

 in
[image: image261.wmf]A

 such that
[image: image262.wmf]ú

û

ú

ê

ë

ê

£

j

k

j

B

A

ED

L

L

1

)

,

(

 or for
[image: image263.wmf]R

B

, there exists a substring
[image: image264.wmf]R

A

 in
[image: image265.wmf]A

 such that
[image: image266.wmf]ú

û

ú

ê

ë

ê

-

£

j

k

j

j

B

A

ED

R

R

)

(

)

,

(

1

.
Lemma 15.3-2
Let
[image: image267.wmf]A

 and
[image: image268.wmf]B

 be two strings. Let
[image: image269.wmf]B

 be divided into
[image: image270.wmf]1

+

k

 pieces
[image: image271.wmf]1

2

1

,

,

,

+

k

B

B

B

L

. Let
[image: image272.wmf]1

2

1

j

L

B

B

B

B

L

=

 and
[image: image273.wmf]1

2

1

1

1

+

+

+

=

k

j

j

R

B

B

B

B

L

. If no
[image: image274.wmf]i

B

,
[image: image275.wmf])

1

1

(

1

1

1

+

£

£

+

£

£

k

i

j

j

i

, appears in
[image: image276.wmf]A

, then there exists no substring
[image: image277.wmf])

(

R

L

A

A

 in
[image: image278.wmf]A

 such that
[image: image279.wmf]÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

+

-

+

£

ú

û

ú

ê

ë

ê

+

£

1

)

1

(

)

,

(

1

)

,

(

1

1

k

k

j

k

B

A

ED

k

k

j

B

A

ED

R

R

L

L

.
Example 15.3-1

Consider
[image: image280.wmf]agcctct

cctagatttt

T

=

,
[image: image281.wmf]acagcgaa

P

=

 and
[image: image282.wmf]3

=

k

. Thus, according to WM2 Algorithm, we would do the following:

(1) Divide
[image: image283.wmf]P

 into
[image: image284.wmf]4

1

=

+

k

 pieces, namely
[image: image285.wmf]cg

P

ag

P

ac

P

=

=

=

3

2

1

,

,

and
[image: image286.wmf]aa

P

=

4

.

(2) We find only
[image: image287.wmf]ag

P

=

2

 appears exactly in
[image: image288.wmf]T

 and it appears twice.
(3) We open two windows with size
[image: image289.wmf]14

3

2

8

2

=

´

+

=

+

k

m

.

For the NB Algorithm, we proceed as follows:

(1) Merge
[image: image290.wmf]1

P

 and
[image: image291.wmf]2

P

 into
[image: image292.wmf]acag

P

L

=

and
[image: image293.wmf]3

P

 and
[image: image294.wmf]4

P

 into
[image: image295.wmf]cgaa

P

R

=

.

(2) We now have
[image: image296.wmf]2

1

=

j

. Applying Lemma 15.3-1, we now try to see whether there is a substring in
[image: image297.wmf]T

 which has edit distance with
[image: image298.wmf]L

P

 or
[image: image299.wmf]R

P

 less than or equal to
[image: image300.wmf]1

4

6

1

2

=

ú

û

ú

ê

ë

ê

=

ú

û

ú

ê

ë

ê

+

k

k

(3) By using Lemma 15.3-2, we may ignore
[image: image301.wmf]R

P

.
(4) To test
[image: image302.wmf]L

P

, we again have to open two windows. But the size of the each window is now
[image: image303.wmf]6

2

4

1

2

2

=

+

=

´

+

m

.

In fact, in this example,
[image: image304.wmf]L

P

 fails the test and thus we may terminate with no solution. We can see that the NB Algorithm is less time-consuming in this example.

Algorithm 15.2 The NB Algorithm for Solving Problem 1
Input: A text string
[image: image305.wmf]n

t

t

t

T

L

2

1

=

, a pattern string
[image: image306.wmf]m

p

p

p

P

L

2

1

=

 and an error bound
[image: image307.wmf]k

.

Output: Every location
[image: image308.wmf]i

 in
[image: image309.wmf]T

 such that there exists a suffix of
[image: image310.wmf])

,

1

(

i

T

 whose edit distance with
[image: image311.wmf]P

 is less than or equal to
[image: image312.wmf]k

.

Step 1: Split
[image: image313.wmf]P

 into
[image: image314.wmf]1

+

k

 pieces, named
[image: image315.wmf]1

2

1

,

,

,

+

k

P

P

P

K

.
Step 2: Check whether any piece
[image: image316.wmf]j

P

 exactly appears in
[image: image317.wmf]T

, where
[image: image318.wmf]1

1

+

£

£

k

j

. If no piece exactly appears in
[image: image319.wmf]T

, declare the solution is
[image: image320.wmf]f

 and exit.

Step 3: Let
[image: image321.wmf]ë

û

2

)

1

(

+

=

k

j

mid

.
Step 3.1 If there exists a
[image: image322.wmf]mid

j

j

£

 such that
[image: image323.wmf]j

P

 exactly appears in
[image: image324.wmf]T

, for each such
[image: image325.wmf]j

P

, open a window
[image: image326.wmf]W

 in
[image: image327.wmf]T

 by using Procedure A with
[image: image328.wmf]j

P

 as the input, apply any algorithm to solve Problem 1 on
[image: image329.wmf]W

 and string
[image: image330.wmf]mid

j

L

P

P

P

P

K

2

1

=

 with error bound
[image: image331.wmf]ë

û

)

1

(

+

×

k

k

j

mid

. For each
[image: image332.wmf]j

P

 whose answer is positive, label it as
[image: image333.wmf]'

j

P

Step 3.2 If there exists a
[image: image334.wmf]mid

j

j

>

 such that
[image: image335.wmf]j

P

 exactly appears in
[image: image336.wmf]T

, for each such
[image: image337.wmf]j

P

, open a window
[image: image338.wmf]W

 in
[image: image339.wmf]T

 by using Procedure A with
[image: image340.wmf]j

P

 as the input, apply any algorithm to solve Problem 1 on
[image: image341.wmf]W

 and string
[image: image342.wmf]1

2

1

+

+

+

=

k

j

j

R

P

P

P

P

mid

mid

K

 with error bound
[image: image343.wmf]ë

û

)

1

(

)

1

(

+

×

-

+

k

k

j

k

mid

. For each
[image: image344.wmf]j

P

 whose answer is positive, label it as
[image: image345.wmf]'

j

P

Step 3.3. If neither
[image: image346.wmf]L

P

 nor
[image: image347.wmf]R

P

 appears in
[image: image348.wmf]T

 with their error bound, declare the solution is
[image: image349.wmf]f

 and exit.

Step 4 For each
[image: image350.wmf]'

j

P

 obtained in Steps 3.1 and 3.2, open a window
[image: image351.wmf]W

 in
[image: image352.wmf]T

 by using Procedure A with
[image: image353.wmf]j

P

 as the input, apply any algorithm to solve Problem 1 on
[image: image354.wmf]W

 and string
[image: image355.wmf]P

 with error bound
[image: image356.wmf]k

. Report the solutions if there is any.
Example 15.3-2

Let the input data as follows:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	T
	=
	a
	t
	a
	g
	g
	t
	t
	g
	c
	a
	g
	g
	t
	a
	g
	t
	a
	a
	t

	P
	=
	t
	g
	c
	a
	g
	c
	c
	c
	
	
	
	
	
	
	
	
	
	
	

[image: image357.wmf]3

=

k

(1)
[image: image358.wmf]gc

P

ca

P

tg

P

=

=

=

3

2

1

,

,

 and
[image: image359.wmf]cc

P

=

4

.
(2)
[image: image360.wmf]2

=

mid

j

.

(3) Only
[image: image361.wmf]tg

P

=

1

 and
[image: image362.wmf]ca

P

=

2

 appear exactly in
[image: image363.wmf]T

.

(4)
[image: image364.wmf]tgca

P

P

P

L

=

=

2

1

. We ignore
[image: image365.wmf]4

3

P

P

P

R

=

 because none of
[image: image366.wmf]3

P

 and
[image: image367.wmf]4

P

 appears exactly in
[image: image368.wmf]T

.
(5) For
[image: image369.wmf]tg

P

=

1

, we open
[image: image370.wmf]ttgcag

T

W

=

=

)

11

,

6

(

 which aligns with
[image: image371.wmf]tg

P

=

1

. There exists one substring in this window having edit distance smaller than or equal to 1 with
[image: image372.wmf]tgca

P

L

=

. Thus we label
[image: image373.wmf]1

P

 as
[image: image374.wmf]'

1

P

.
(6) Similarly, we label
[image: image375.wmf]2

P

 as
[image: image376.wmf]'

2

P

. The window is the same.

(7) We open window
[image: image377.wmf]agta

ggttgcaggt

T

=

)

17

,

4

(

 and find that there is a substring inside it, namely
[image: image378.wmf]tgcaggta

T

=

)

14

,

7

(

 whose edit distance with
[image: image379.wmf]tgcagccc

P

=

 is
[image: image380.wmf]k

=

3

. Thus location 14 is the solution.
Example 15.3.-3

Let the input data as follows:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	T
	=
	a
	t
	a
	g
	g
	t
	t
	g
	c
	a
	g
	g
	t
	a
	g
	t
	a
	a
	t

	P
	=
	t
	c
	c
	a
	t
	c
	c
	c
	
	
	
	
	
	
	
	
	
	
	

[image: image381.wmf]3

=

k

(1)
[image: image382.wmf]tc

P

ca

P

tc

P

=

=

=

3

2

1

,

,

 and
[image: image383.wmf]cc

P

=

4

(2)
[image: image384.wmf]2

=

mid

j

.

(3) Only
[image: image385.wmf]ca

P

=

2

 appears exactly in
[image: image386.wmf]T

.

(4)
[image: image387.wmf]tcca

P

P

P

L

=

=

2

1

. We ignore
[image: image388.wmf]4

3

P

P

P

R

=

 because none of
[image: image389.wmf]3

P

 and
[image: image390.wmf]4

P

 appears exactly in
[image: image391.wmf]T

.

(5) For
[image: image392.wmf]ca

P

=

2

, we open window
[image: image393.wmf]ttgcag

T

W

=

=

)

11

,

6

(

 which aligns with
[image: image394.wmf]ca

P

=

2

. There exists no substring in this window having edit distance smaller than or equal to 1 with
[image: image395.wmf]tcca

P

L

=

.
(6) Terminate and report no solution.

PAGE
15-9

_1311621520.unknown

_1311703883.unknown

_1430478413.unknown

_1430549505.unknown

_1430552633.unknown

_1430553331.unknown

_1430559490.unknown

_1430562299.unknown

_1430562639.unknown

_1439315171.unknown

_1430563033.unknown

_1430563049.unknown

_1430563243.unknown

_1430562983.unknown

_1430562509.unknown

_1430562586.unknown

_1430562337.unknown

_1430562272.unknown

_1430562187.unknown

_1430562242.unknown

_1430553630.unknown

_1430553653.unknown

_1430553435.unknown

_1430553583.unknown

_1430552653.unknown

_1430553048.unknown

_1430553133.unknown

_1430552764.unknown

_1430552641.unknown

_1430551551.unknown

_1430552067.unknown

_1430552277.unknown

_1430552137.unknown

_1430552159.unknown

_1430551528.unknown

_1430551338.unknown

_1430551426.unknown

_1430489787.unknown

_1430549284.unknown

_1430549468.unknown

_1430549479.unknown

_1430549305.unknown

_1430546365.unknown

_1430546426.unknown

_1430490638.unknown

_1430490215.unknown

_1430490256.unknown

_1430489854.unknown

_1430489992.unknown

_1430490184.unknown

_1430489835.unknown

_1430489194.unknown

_1430489341.unknown

_1430489660.unknown

_1430489752.unknown

_1430489629.unknown

_1430489238.unknown

_1430489258.unknown

_1430489224.unknown

_1430488739.unknown

_1430488867.unknown

_1430488891.unknown

_1430488794.unknown

_1430480010.unknown

_1430488668.unknown

_1430479981.unknown

_1311705633.unknown

_1311949206.unknown

_1405617497.unknown

_1430478138.unknown

_1430478281.unknown

_1430478317.unknown

_1430478388.unknown

_1430478268.unknown

_1407584145.unknown

_1407584339.unknown

_1430399301.unknown

_1430416350.vsd
m

k

k

Ti

Pi

S

P

W

_1407584425.unknown

_1419703198.unknown

_1407584403.unknown

_1407584288.unknown

_1407584308.unknown

_1407584266.unknown

_1407583329.unknown

_1407583768.unknown

_1407583774.unknown

_1405786631.unknown

_1407583249.unknown

_1407583299.unknown

_1405667148.unknown

_1313935920.unknown

_1322760352.unknown

_1322761597.unknown

_1322761598.unknown

_1322760571.unknown

_1322760340.unknown

_1311705830.unknown

_1311706024.unknown

_1311949135.vsd
T

P

Ti

Pi

k

k

W

T

_1311705905.unknown

_1311705801.unknown

_1311704407.unknown

_1311704445.unknown

_1311704508.unknown

_1311705450.unknown

_1311704482.unknown

_1311704435.unknown

_1311704367.unknown

_1311704386.unknown

_1311704305.unknown

_1311664857.unknown

_1311665665.unknown

_1311699196.unknown

_1311703151.unknown

_1311703181.unknown

_1311700091.unknown

_1311700153.unknown

_1311699375.unknown

_1311699068.unknown

_1311699094.unknown

_1311699117.unknown

_1311698954.unknown

_1311698980.unknown

_1311698632.unknown

_1311698577.unknown

_1311698545.unknown

_1311665093.unknown

_1311665230.unknown

_1311665603.unknown

_1311665149.unknown

_1311664999.unknown

_1311665053.unknown

_1311664010.unknown

_1311664170.unknown

_1311664838.unknown

_1311664154.unknown

_1311664057.unknown

_1311664108.unknown

_1311663569.unknown

_1311663809.unknown

_1311663472.unknown

_1311663529.unknown

_1311663500.unknown

_1311621707.unknown

_1311621706.unknown

_1311535048.unknown

_1311617862.unknown

_1311620469.unknown

_1311620994.unknown

_1311621298.unknown

_1311621392.unknown

_1311621145.unknown

_1311621203.unknown

_1311620645.unknown

_1311620876.unknown

_1311620521.unknown

_1311620413.unknown

_1311620445.unknown

_1311620384.unknown

_1311620293.unknown

_1311620343.unknown

_1311575340.vsd
m

k

k

_1311575848.unknown

_1311575899.unknown

_1311575870.unknown

_1311575768.unknown

_1311575832.unknown

_1311571174.unknown

_1311574763.unknown

_1311535973.unknown

_1311443060.unknown

_1311449181.unknown

_1311534891.unknown

_1311534905.unknown

_1311535047.unknown

_1311532284.unknown

_1311449257.unknown

_1311446459.unknown

_1311449036.unknown

_1311449148.unknown

_1311447918.unknown

_1311447966.unknown

_1311443662.unknown

_1311443778.unknown

_1311443801.unknown

_1311443723.unknown

_1311443356.unknown

_1311443568.unknown

_1311443606.unknown

_1311443249.unknown

_1311436862.unknown

_1311439581.unknown

_1311441066.unknown

_1311441382.unknown

_1311441517.unknown

_1311441462.unknown

_1311441515.unknown

_1311441416.unknown

_1311441258.unknown

_1311441297.unknown

_1311441078.unknown

_1311440868.unknown

_1311440947.unknown

_1311441022.unknown

_1311439617.unknown

_1311439811.unknown

_1311439836.unknown

_1311439535.unknown

_1311439375.unknown

_1311439403.unknown

_1311439477.unknown

_1311439328.unknown

_1311439354.unknown

_1311439248.unknown

_1311439313.unknown

_1311360686.unknown

_1311436249.unknown

_1311436802.unknown

_1311436817.unknown

_1311436296.unknown

_1311436307.unknown

_1311436370.unknown

_1311436252.unknown

_1311436180.unknown

_1311360427.unknown

_1311360535.unknown

_1311360592.unknown

_1311360482.unknown

_1311360516.unknown

_1311360375.unknown

