Chapter 13  The WM1 Algorithm for Problem 1, a Bit-Parallel Approximate String Matching Algorithm
In this chapter, we shall introduce the Wu and Manber Algorithm to solve Problem 1.  We shall start with the basic idea of the algorithm in the first section.  A more sophisticated version of the algorithm will be introduced in the second section.  The Wu and Manber Algorithm is now called WM1Algorithm because another algorithm, also proposed by the two authors will be introduced in Chapter 15.
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The WM1 Algorithm is essentially based upon the above line of thinking.
Section 13.1  The Step by Step Approach to Solve Problem 1
In the previous chapters, Problem 1 was solved in some sense, in one stroke.  The WM1 algorithm solves the problem step by step.  
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Some explanations of the boundary conditions are in order.
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Table 13.1-1  An illustration of 
[image: image73.wmf]0

R

 for 
[image: image74.wmf]gac

aacaagaaca

T

=

 

and 
[image: image75.wmf]aacag

P

=

.

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
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	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
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	0
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	0
	0
	0
	1
	0
	0
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	0
	0
	0
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	0
	0
	0
	0
	1
	0
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Using the above rules and the 
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Essentially, Equations (13.1-9) to (13.1-12) indicate that for any location 
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In the following, we shall give some examples to show how entries in 
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 is obtained.  We should make it clear at this point that our approach is a column wise, from left to right, approach.  Note the initial condition gives Column 0.  We first compute the entries of Column 1, then those of Column 2 and so on.
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Example 13.1-4
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Section 13.2  The Bit-Parallel Approach to Find 
[image: image135.wmf]0

R


In this section, we shall first discuss the bit-parallel approach to find 
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We need some new terms.
Definition 13.2-1 
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Definition 13.2-2  The incidence vector for the bit-parallel version of the WM1 Algorithm
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Before introducing the bit-parallel approach to find 
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Table 13.2-1  
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	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
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	0
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	1
	1
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	1
	1
	1
	1
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Consider column 9.  We have 
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We also need to define a new term, namely 
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Definition 13.2-4  
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 for the Bit-Parallel Version of the WM1 Algorithm
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The general rule for obtaining the 
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Equation (13.2-5) indicates that 
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Let us see how the above rule works.

Example 13.2-1

Let us redraw Table 13.2-1 as in Table 13.2-2.

Table 13.2-2  
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Consider how Column 4 can be obtained after Column 3 is obtained.  Here, we have 
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Let us consider another case where 
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Perhaps an informal description of the bit-parallel approach to find 
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 will help the reader to understand the meaning of it.

Consider Table 13.2-2.  We start with 
[image: image257.wmf]0
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.  

(1) The column vector for 
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 is (00000) as it is stipulated by the initial conditions.  

(2) We shift it one step and it becomes (00000).

(3) We change the first bit to be 1.  So the vector becomes (10000).

(4) Since 
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, the first bit remains 1, and the resulting vector is (10000)

(5) We claim that (10000) is the column vector for 
[image: image260.wmf]1

1

0

=

+

=

i

.

(1) Let us assume that we have obtained the column vector of 
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 which is (11000).

(2) We shift it one step and it becomes (01100).

(3) We change the first bit to be 1.  So the vector becomes (11100).
(4) Only 
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.  Thus the vector becomes (00100).  Note the first and the second bits all become 0 now.

(5) We claim that (00100) is the column vector for 
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Having discussed the bit-parallel approach of obtaining 
[image: image264.wmf]0
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, we are now all set to introduce the bit-parallel approach to obtain 
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 for 
[image: image266.wmf]0

>

k

.

Section 13.3  The Bit-Parallel Approach to Find 
[image: image267.wmf]k

R


The bit-parallel approach to find 
[image: image268.wmf]k
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 is quite similar to that of finding 
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.  First of all, rule stipulated in Equation (13.2-5) is still needed.  That is, we need the following formula:
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In the above formula the term 
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 is temporarily ignored.  We shall see that it is restored in the final formula expressed in Equation (13.3-1)

Besides, the following rules are used for insertion, deletion and substitution:

Rule 13.3-1:  The Insertion Rule for the Bit-Parallel Approach for 
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.
(1) Insertion:  From Equation (13.1-11), we know that we must test whether 
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Example 13.3-1 


Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-1 and Table 13.3-2 respectively as follows.

Table 13.3-1 
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 for 
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 and 
[image: image278.wmf]aacag

P

=

.

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
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	a
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	1
	1
	1
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	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
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Table 13.3-2  An illustration of 
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 for 
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 and 
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	1
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	1
	1
	1
	1
	1
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	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	c
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1

	4
	a
	0
	0
	0
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0

	5
	g
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	0



Consider 
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From the above vector, we can see that 
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 due to an insertion.  As seen in Table 13.3-2, this is correct.

Rule 13.3-2:  The Deletion Rule for the Bit-Parallel Approach for 
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(2)  From Equation (13.1-12), we know that we must test whether 
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Example 13.3-2  

Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-3 and Table 13.3-4 respectively.  

Table 13.3-3 
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 for 
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 and 
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	2
	a
	0
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	3
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	4
	a
	0
	0
	0
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	1
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	1
	0
	0
	0

	5
	g
	0
	0
	0
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Table 13.3-4  An illustration of 
[image: image293.wmf]1
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 for 
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 and 
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	3
	c
	0
	0
	1
	1
	1
	1
	1
	0
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	1
	1
	0
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	1

	4
	a
	0
	0
	0
	1
	1
	1
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	1
	0
	1
	1
	1
	0
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	5
	g
	0
	0
	0
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From the above vector, we conclude 
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 due to a deletion.   This is correct as seen in Table 13.3-4.

We now come to the substitution case.

Rule 13.3-3:  From Equation (13.1-10), we know that we must test whether 
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Example 13.3-3

Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-5 and Table 13.3-6 respectively.
Table 13.3-5 
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 for 
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 and 
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 due to substitutions.  As can be seen from Table 13.3-6, the solution is correct.

We may implement the three operations into one single formula as follows:
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Let us try to explain the physical meaning of Equation (13.3-1) as follows:
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The beauty of Equation (13.3-1) is that we do not have to worry about the dynamic programming tables for insertion, deletion and substitution any more.  Instead, we only make use of 
[image: image335.wmf]1

1

1

1

,

,

-

-

-

-

k

i

k

i

k

i

R

R

R

and 
[image: image336.wmf])

,

(

P

t

IV

i

 to produce 
[image: image337.wmf]k

i

R

. 

Example 13.3-4
Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-7 and Table 13.3-8 respectively.
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Based upon 
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, we may obtain 
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 as shown in Table 13.3-9
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