Chapter 13 The WM1 Algorithm for Problem 1, a Bit-Parallel Approximate String Matching Algorithm
In this chapter, we shall introduce the Wu and Manber Algorithm to solve Problem 1. We shall start with the basic idea of the algorithm in the first section. A more sophisticated version of the algorithm will be introduced in the second section. The Wu and Manber Algorithm is now called WM1Algorithm because another algorithm, also proposed by the two authors will be introduced in Chapter 15.
Suppose that we are computing
[image: image1.wmf])

,

(

1

j

i

ed

 for some input data
[image: image2.wmf])

,

1

(

n

T

 and
[image: image3.wmf])

,

1

(

m

P

. We ask the following question: Under what condition will
[image: image4.wmf]k

j

i

ed

£

)

,

(

1

? We say that
[image: image5.wmf]k

j

i

ed

£

)

,

(

1

 if and only if one of the following conditions is satisfied:
(1)
[image: image6.wmf]j

i

p

t

=

 and
[image: image7.wmf]k

j

i

ed

£

-

-

)

1

,

1

(

1

. (13-1)
(2)
[image: image8.wmf]1

)

1

,

1

(

1

-

£

-

-

k

j

i

ed

. (In this case, we may perform a substitution.) (13-2)
(3)
[image: image9.wmf]1

)

,

1

(

1

-

£

-

k

j

i

ed

 (In this case, we may perform an insertion.) (13-3)
(4)
[image: image10.wmf]1

)

1

,

(

1

-

£

-

k

j

i

ed

. (In this case, we may perform a deletion.) (13-4)

The WM1 Algorithm is essentially based upon the above line of thinking.
Section 13.1 The Step by Step Approach to Solve Problem 1
In the previous chapters, Problem 1 was solved in some sense, in one stroke. The WM1 algorithm solves the problem step by step.

For a specified error bound
[image: image11.wmf]k

, the WM1 Algorithm starts with
[image: image12.wmf]0

=

a

. That is, for every
[image: image13.wmf]i

 and
[image: image14.wmf]j

, we ask whether there is a suffix
[image: image15.wmf]i

S

 of
[image: image16.wmf])

,

1

(

i

T

 whose edit distance with
[image: image17.wmf])

,

1

(

j

P

 is equal to
[image: image18.wmf]0

=

a

. After this is done, we set
[image: image19.wmf]1

1

=

+

=

a

a

 and ask whether there is a suffix
[image: image20.wmf]i

S

 of
[image: image21.wmf])

,

1

(

i

T

 whose edit distance with
[image: image22.wmf])

,

1

(

j

P

 is equal to
[image: image23.wmf]1

=

a

. This process is continued until
[image: image24.wmf]k

a

=

.

Definition 13.1-1 Matrix
[image: image25.wmf])

,

(

j

i

R

k

 for the WM1 Algorithm

Given
[image: image26.wmf]n

t

t

t

T

L

2

1

=

,
[image: image27.wmf]m

p

p

p

P

L

2

1

=

 and the error bound
[image: image28.wmf]k

, matrix
[image: image29.wmf])

,

(

j

i

R

k

 is defined as follows:

[image: image30.wmf]m

j

n

i

j

i

R

k

j

i

ed

j

i

R

k

k

£

£

£

£

=

£

=

1

,

1

for

otherwise

if

0

)

,

(

)

,

(

if

1

)

,

(

1

 (13.1-1)

[image: image31.wmf]1

)

0

,

0

(

=

k

R

(13.1-2)

[image: image32.wmf]m

j

k

i

j

R

k

j

j

R

k

k

£

<

=

£

=

f

0

)

,

0

(

if

1

)

,

0

(

(13.1-3)

[image: image33.wmf]n

i

i

R

k

£

£

=

1

for

1

)

0

,

(

(13.1-4)

Some explanations of the boundary conditions are in order.

(1)
[image: image34.wmf]1

)

,

0

(

=

j

R

k

 if
[image: image35.wmf]k

j

£

.

[image: image36.wmf])

,

0

(

j

R

k

 is related to the case where
[image: image37.wmf]T

 is an empty string
[image: image38.wmf]e

 and pattern
[image: image39.wmf]P

 is a string with length
[image: image40.wmf]j

. By performing
[image: image41.wmf]j

 deletions,
[image: image42.wmf]P

 will be transformed into
[image: image43.wmf]e

. Thus, if
[image: image44.wmf]k

j

£

,
[image: image45.wmf]k

j

j

ed

£

£

)

,

0

(

1

. Therefore,
[image: image46.wmf]1

)

,

0

(

=

j

R

k

 if
[image: image47.wmf]k

j

£

.

The above discussion also explains why

[image: image48.wmf]m

j

k

if

j

R

k

£

<

=

0

)

,

0

(

.

(2)
[image: image49.wmf]1

)

0

,

(

=

i

R

k

 for
[image: image50.wmf]n

i

£

£

1

.

Note that we are working on
[image: image51.wmf])

,

(

1

j

i

ed

, not
[image: image52.wmf]).

,

(

j

i

ed

 Thus there is a suffix of
[image: image53.wmf])

,

1

(

i

T

 which is an empty string
[image: image54.wmf]e

. Since the pattern
[image: image55.wmf]P

 is also an empty string
[image: image56.wmf]e

, the edit distance between them is 0. Since
[image: image57.wmf]k

i

ed

£

=

0

)

0

,

(

1

 for any
[image: image58.wmf]k

,
[image: image59.wmf]1

)

0

,

(

=

i

R

k

 for
[image: image60.wmf]n

i

£

£

1

.

[image: image61.wmf]0

R

 is easy to find. We may use dynamic programming approach to find it by using the following rules:

[image: image62.wmf]1

)

0

,

(

0

=

i

R

 for
[image: image63.wmf]n

i

£

£

0

(13.1-5)

[image: image64.wmf]0

)

,

0

(

0

=

j

R

 for
[image: image65.wmf]m

j

£

£

1

.

(13.1-6)

[image: image66.wmf]1

)

,

(

0

=

j

i

R

 if
[image: image67.wmf]1

)

1

,

1

(

0

=

-

-

j

i

R

 and
[image: image68.wmf]j

i

p

t

=

(13.1-7)

[image: image69.wmf]0

)

,

(

0

=

j

i

R

 if otherwise.

(13.1-8)

 Let
[image: image70.wmf]gac

aacaagaaca

T

=

 and
[image: image71.wmf]aacag

P

=

. Then
[image: image72.wmf]0

R

 is shown in Table 13.1-1

Table 13.1-1 An illustration of
[image: image73.wmf]0

R

 for
[image: image74.wmf]gac

aacaagaaca

T

=

and
[image: image75.wmf]aacag

P

=

.

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

Let us note one special property of the
[image: image76.wmf]k

R

 table. Note that
[image: image77.wmf]0

)

0

,

(

1

=

i

ed

 for
[image: image78.wmf]n

i

£

£

1

. It is easy to see that
[image: image79.wmf]1

)

1

,

(

1

£

i

ed

. Thus we have
[image: image80.wmf]1

)

1

,

(

=

i

R

k

 for all
[image: image81.wmf]i

 if
[image: image82.wmf]1

³

k

.

We now use Equations (13.1-1) to (13.1-4) to have the following rule:

[image: image83.wmf]1

)

1

,

(

)

0

,

(

=

=

i

R

i

R

k

k

 for all
[image: image84.wmf]i

 if
[image: image85.wmf]1

³

k

.
For
[image: image86.wmf]m

j

£

<

1

,
[image: image87.wmf]1

)

,

(

=

j

i

R

k

 if and only if one of the following conditions is satisfied:
(1)
[image: image88.wmf]j

i

p

t

=

 and
[image: image89.wmf]1

)

1

,

1

(

=

-

-

j

i

R

k

. (13.1-9)

(2)
[image: image90.wmf]1

)

1

,

1

(

1

=

-

-

-

j

i

R

k

. (In this case, we may perform a substitution.) (13.1-10)
(3)
[image: image91.wmf]1

)

,

1

(

1

=

-

-

j

i

R

k

 (In this case, we may perform an insertion.) (13.1-11)
(4)
[image: image92.wmf]1

)

1

,

(

1

=

-

-

j

i

R

k

. (In this case, we may perform a deletion.) (13.1-12)

Using the above rules and the
[image: image93.wmf]0

R

 table, we can obtain
[image: image94.wmf]1

R

 as shown in Table 13.1-2. If the error bound
[image: image95.wmf]k

 is set to be 1, from the
[image: image96.wmf]1

R

 table, we can see that locations 4, 5, 6, 10, 11 and 12 are solutions for Problem 1.

Table 13.1-2 An illustration of
[image: image97.wmf]1

R

 for
[image: image98.wmf]gac

aacaagaaca

T

=

 and
[image: image99.wmf]aacag

P

=

.
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	a
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	c
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1

	4
	a
	0
	0
	0
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0

	5
	g
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	0

Essentially, Equations (13.1-9) to (13.1-12) indicate that for any location
[image: image100.wmf])

,

(

j

i

, we first examine whether
[image: image101.wmf]j

i

p

t

=

. If this is true, we examine whether
[image: image102.wmf]1

)

1

,

1

(

=

-

-

j

i

R

k

. If this is again true, we set
[image: image103.wmf]1

)

,

(

=

j

i

R

k

. If
[image: image104.wmf]j

i

p

t

¹

, we examine the three neighbors of
[image: image105.wmf])

,

(

1

j

i

R

k

-

. If any one of them assumes the value 1, we set
[image: image106.wmf]1

)

,

(

=

j

i

R

k

.

In the following, we shall give some examples to show how entries in
[image: image107.wmf]1

R

 are obtained after
[image: image108.wmf]0

R

 is obtained. We should make it clear at this point that our approach is a column wise, from left to right, approach. Note the initial condition gives Column 0. We first compute the entries of Column 1, then those of Column 2 and so on.

In the following, we shall show some examples about how to find entries for
[image: image109.wmf]1

R

.
Example 13.1-1

Consider location
[image: image110.wmf])

1

,

1

(

)

,

(

=

j

i

 in
[image: image111.wmf]1

R

. In this case,
[image: image112.wmf]1

1

p

p

a

t

t

j

i

=

=

=

=

. Besides,
[image: image113.wmf]1

)

0

,

0

(

)

1

,

1

(

1

1

=

=

-

-

R

j

i

R

 as this is specified by the initial condition. According to Equation (13.1-9),
[image: image114.wmf]1

)

1

,

1

(

)

,

(

1

1

=

=

R

j

i

R

.
Example 13.1-2

Consider location
[image: image115.wmf])

3

,

1

(

)

,

(

=

j

i

 in
[image: image116.wmf]1

R

. In this case,
[image: image117.wmf]c

p

p

a

t

t

j

i

=

=

¹

=

=

3

1

. Besides, none of the three neighbors of
[image: image118.wmf])

3

,

1

(

)

,

(

0

0

R

j

i

R

=

 is 1. Therefore
[image: image119.wmf]0

)

3

,

1

(

)

,

(

1

1

=

=

R

j

i

R

.

Example 13.1-3

Consider location
[image: image120.wmf])

3

,

5

(

)

,

(

=

j

i

 in
[image: image121.wmf]1

R

. In this case,
[image: image122.wmf]c

p

p

a

t

t

j

i

=

=

¹

=

=

3

5

. But
[image: image123.wmf]1

)

2

,

5

(

)

1

,

(

0

0

=

=

-

R

j

i

R

. Therefore,
[image: image124.wmf]1

)

3

,

5

(

)

,

(

1

1

=

=

R

j

i

R

. This is so due to a deletion.
Example 13.1-4
Consider location
[image: image125.wmf])

3

,

4

(

)

,

(

=

j

i

 in
[image: image126.wmf]1

R

. In this case,
[image: image127.wmf]c

p

p

a

t

t

j

i

=

=

¹

=

=

3

4

. But
[image: image128.wmf]1

)

3

,

3

(

)

,

1

(

0

0

=

=

-

R

j

i

R

. Therefore,
[image: image129.wmf]1

)

3

,

4

(

)

,

(

1

1

=

=

R

j

i

R

. This is so due to an insertion.

Example 13.1-5

Consider location
[image: image130.wmf])

3

,

6

(

)

,

(

=

j

i

 in
[image: image131.wmf]1

R

. In this case,
[image: image132.wmf]c

p

p

a

t

t

j

i

=

=

¹

=

=

3

6

. But
[image: image133.wmf]1

)

2

,

5

(

)

1

,

1

(

0

0

=

=

-

-

R

j

i

R

. Therefore,
[image: image134.wmf]1

)

3

,

6

(

)

,

(

1

1

=

=

R

j

i

R

. This is so due to a substitution.

Section 13.2 The Bit-Parallel Approach to Find
[image: image135.wmf]0

R

In this section, we shall first discuss the bit-parallel approach to find
[image: image136.wmf]0

R

. It is based upon the following rules.

[image: image137.wmf]1

)

0

,

(

0

=

i

R

 for
[image: image138.wmf]n

i

£

£

0

(13.2-1)

[image: image139.wmf]0

)

,

0

(

0

=

j

R

 for
[image: image140.wmf]m

j

£

£

1

.

(13.2-2)

[image: image141.wmf]1

)

,

(

0

=

j

i

R

 if
[image: image142.wmf]1

)

1

,

1

(

0

=

-

-

j

i

R

 and
[image: image143.wmf]j

i

p

t

=

(13.2-3)

[image: image144.wmf]0

)

,

(

0

=

j

i

R

 if otherwise.

(13.2-4)

We need some new terms.
Definition 13.2-1
[image: image145.wmf]k

i

R

 for the Bit-Parallel Version of the WM1 Algorithm

The
[image: image146.wmf]th

i

-

 column of
[image: image147.wmf]k

R

 is denoted as
[image: image148.wmf]k

i

R

.
From Equations (13.1-5) to (13.1-8), we can see that we can determine
[image: image149.wmf]0

1

+

i

R

 if
[image: image150.wmf]0

i

R

 and whether
[image: image151.wmf]j

i

p

t

=

 for
[image: image152.wmf]m

j

£

£

1

 are known. To achieve this goal, we use the concept of incidence vector which was defined and introduced in Chapter 2. Let us give the definition of it again as follows:

Definition 13.2-2 The incidence vector for the bit-parallel version of the WM1 Algorithm

Given a string
[image: image153.wmf]n

s

s

s

S

L

2

1

=

 and a character
[image: image154.wmf]x

,
[image: image155.wmf])

,

,

,

(

)

,

(

2

1

n

iv

iv

iv

S

x

IV

L

=

 where
[image: image156.wmf]1

=

j

iv

 if
[image: image157.wmf]x

s

j

=

 and
[image: image158.wmf]0

=

j

iv

 if otherwise.

For instance, let
[image: image159.wmf]aacag

P

=

. Then

[image: image160.wmf])

00001

(

)

,

(

)

00100

(

)

,

(

)

11010

(

)

,

(

=

=

=

P

g

IV

P

c

IV

P

a

IV

Let
[image: image161.wmf]).

,

(

P

t

IV

A

i

=

 Then
[image: image162.wmf]1

)

(

=

j

A

 if and only if
[image: image163.wmf]j

i

p

t

=

. Suppose
[image: image164.wmf]a

t

i

=

. Then, from
[image: image165.wmf])

11010

(

)

,

(

=

P

a

IV

, we know that
[image: image166.wmf]a

p

p

p

=

=

=

4

2

1

.

Before introducing the bit-parallel approach to find
[image: image167.wmf]0

R

, let us first show an example of
[image: image168.wmf]0

R

.

Table 13.2-1
[image: image169.wmf]0

R

 of
[image: image170.wmf]gac

aacaagaaca

T

=

 and
[image: image171.wmf]aacag

P

=

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

Consider column 9. We have
[image: image172.wmf])

00100

(

0

9

=

R

 and we want to determine
[image: image173.wmf]0

10

R

. From
[image: image174.wmf])

00100

(

0

9

=

R

, we know that
[image: image175.wmf]3

2

1

9

8

7

p

p

p

t

t

t

=

. If we further know that
[image: image176.wmf]4

1

3

10

1

9

p

p

t

t

=

=

=

+

+

, we can conclude that
[image: image177.wmf]1

)

4

,

10

(

0

=

R

. We now may use the right shift of a vector concept defined and introduced in Chapter 2.
Definition 13.2-3 The right shift of a vector

Given a vector
[image: image178.wmf])

,

,

,

(

2

1

n

v

v

v

V

L

=

, the right shift of
[image: image179.wmf]j

 steps of
[image: image180.wmf]V

, denoted as
[image: image181.wmf]j

R

V

,

, is
[image: image182.wmf])

,

,

,

,

0

,

,

0

(

2

1

,

j

n

j

R

v

v

v

V

-

=

L

L

. For convenience of notation, we shall use
[image: image183.wmf]1

>>

V

 to denote the 1- right shift of a vector
[image: image184.wmf]V

.
Let
[image: image185.wmf])

1

,

1

,

1

,

0

,

0

,

1

(

=

V

. Then
[image: image186.wmf])

1

,

0

,

0

,

1

,

0

,

0

(

2

,

=

R

V

 and
[image: image187.wmf])

0

,

1

,

0

,

0

,

0

,

0

(

4

,

=

R

V

.

We also need to define a new term, namely
[image: image188.wmf]j

10

.
Definition 13.2-4
[image: image189.wmf]j

10

 for the Bit-Parallel Version of the WM1 Algorithm

[image: image190.wmf]j

10

is a vector consisting a 1 followed by
[image: image191.wmf]j

 0’s.
For instance,
[image: image192.wmf])

10000

(

10

4

=

.

For convenience, let us denote
[image: image193.wmf]0

9

R

 by
[image: image194.wmf]A

. We perform a 1-step right shift on
[image: image195.wmf]0

9

R

A

=

 and obtain
[image: image196.wmf])

00010

(

)

1

)

00100

(

(

0

9

=

>>

=

=

R

B

. We now perform an OR function on
[image: image197.wmf])

00010

(

=

B

 and vector
[image: image198.wmf]4

10

 and obtain
[image: image199.wmf])

10010

(

=

C

. Since this vector
[image: image200.wmf]C

 is obtained by a right shift of one step of
[image: image201.wmf]0

9

R

 and
[image: image202.wmf]1

4

=

c

, we know that
[image: image203.wmf]3

2

1

9

8

7

p

p

p

t

t

t

=

. Now, what does
[image: image204.wmf]1

1

=

c

 mean? It actually does not mean anything at this moment. It helps us to determine whether
[image: image205.wmf]1

10

p

t

=

.
Suppose we perform an AND operation on
[image: image206.wmf])

10010

(

=

C

 and
[image: image207.wmf])

11010

(

)

,

(

)

,

(

10

=

=

P

a

IV

P

t

IV

, we will obtain a vector
[image: image208.wmf])

10010

(

=

D

. This vector is indeed
[image: image209.wmf]0

10

R

. That is
[image: image210.wmf])

10010

(

0

10

=

R

. Let us explain why we can draw this conclusion.

(1) In vector
[image: image211.wmf]D

,
[image: image212.wmf]1

1

=

d

. This indicates that
[image: image213.wmf]1

10

p

t

=

 which is correct. Note that
[image: image214.wmf]1

1

=

d

 is caused by the AND operation on
[image: image215.wmf])

10010

(

=

C

 and
[image: image216.wmf])

11010

(

)

,

(

)

,

(

10

=

=

P

a

IV

P

t

IV

. Since this operation is an AND operation, it ensures us that
[image: image217.wmf]1

10

p

t

=

 is properly recorded.

(2) In vector
[image: image218.wmf]D

,
[image: image219.wmf]1

4

=

d

. Note that this is caused by an AND operation of vector
[image: image220.wmf]C

 and
[image: image221.wmf])

,

(

10

P

t

IV

. Since
[image: image222.wmf]C

 is a 1-step right shift of
[image: image223.wmf]0

9

R

A

=

, it indicates that in
[image: image224.wmf]0

9

R

A

=

,
[image: image225.wmf]1

3

=

a

 which in turn means that
[image: image226.wmf]3

2

1

9

8

7

p

p

p

t

t

t

=

. Since vector
[image: image227.wmf]D

 is obtained by an AND operation of
[image: image228.wmf]C

 and
[image: image229.wmf])

,

(

10

P

t

IV

, this means that
[image: image230.wmf]4

10

p

t

=

 . Thus we have
[image: image231.wmf]3

2

1

9

8

7

p

p

p

t

t

t

=

 and
[image: image232.wmf]4

10

p

t

=

. Therefore we conclude that
[image: image233.wmf]4

3

2

1

10

9

8

7

p

p

p

p

t

t

t

t

=

 and
[image: image234.wmf]1

)

4

,

10

(

0

=

R

.
The general rule for obtaining the
[image: image235.wmf]-

i

th column of
[image: image236.wmf]0

R

 is as follows:

[image: image237.wmf])

,

(

&

)

10

)

1

((

1

1

P

t

IV

R

R

i

m

k

i

k

i

-

-

Ú

>>

=

 (13.2-5)

Equation (13.2-5) indicates that
[image: image238.wmf]1

)

,

(

0

=

j

i

R

 if and only if
[image: image239.wmf]1

)

1

,

1

(

0

=

-

-

j

i

R

 and
[image: image240.wmf]j

i

p

t

=

 which coincides with Equation (13.2-3).

Let us see how the above rule works.

Example 13.2-1

Let us redraw Table 13.2-1 as in Table 13.2-2.

Table 13.2-2
[image: image241.wmf]0

R

 of
[image: image242.wmf]gac

aacaagaaca

T

=

 and
[image: image243.wmf]aacag

P

=

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

Consider how Column 4 can be obtained after Column 3 is obtained. Here, we have
[image: image244.wmf]4

=

i

 and
[image: image245.wmf]3

1

=

-

i

[image: image246.wmf])

00010

(

)

1

(

0

3

=

>>

R

[image: image247.wmf])

10010

(

)

10000

(

)

00010

(

)

10

)

1

((

4

0

3

=

Ú

=

Ú

>>

R

[image: image248.wmf])

11010

(

)

,

(

)

,

(

4

=

=

P

a

IV

P

t

IV

[image: image249.wmf])

10010

(

)

11010

(

&

)

10010

(

)

,

(

&

)

10

)

1

((

4

4

0

3

0

4

=

=

Ú

>>

=

P

t

IV

R

R

Let us consider another case where
[image: image250.wmf]13

=

i

. Here
[image: image251.wmf]12

1

=

-

i

.

[image: image252.wmf])

01000

(

)

1

(

0

12

=

>>

R

[image: image253.wmf])

11000

(

)

10000

(

)

01000

(

)

10

)

1

((

4

0

12

=

Ú

=

Ú

>>

R

[image: image254.wmf])

00100

(

)

,

(

)

,

(

13

=

=

P

c

IV

P

t

IV

[image: image255.wmf])

00000

(

)

00100

(

&

)

11000

(

)

,

(

&

)

10

)

1

((

13

4

0

12

0

13

=

=

Ú

>>

=

P

t

IV

R

R

.

Perhaps an informal description of the bit-parallel approach to find
[image: image256.wmf]0

R

 will help the reader to understand the meaning of it.

Consider Table 13.2-2. We start with
[image: image257.wmf]0

=

i

.

(1) The column vector for
[image: image258.wmf]0

=

i

 is (00000) as it is stipulated by the initial conditions.

(2) We shift it one step and it becomes (00000).

(3) We change the first bit to be 1. So the vector becomes (10000).

(4) Since
[image: image259.wmf]1

1

p

t

=

, the first bit remains 1, and the resulting vector is (10000)

(5) We claim that (10000) is the column vector for
[image: image260.wmf]1

1

0

=

+

=

i

.

(1) Let us assume that we have obtained the column vector of
[image: image261.wmf]8

=

i

 which is (11000).

(2) We shift it one step and it becomes (01100).

(3) We change the first bit to be 1. So the vector becomes (11100).
(4) Only
[image: image262.wmf]3

9

p

t

=

. Thus the vector becomes (00100). Note the first and the second bits all become 0 now.

(5) We claim that (00100) is the column vector for
[image: image263.wmf]9

1

8

=

+

=

i

.

Having discussed the bit-parallel approach of obtaining
[image: image264.wmf]0

R

, we are now all set to introduce the bit-parallel approach to obtain
[image: image265.wmf]k

R

 for
[image: image266.wmf]0

>

k

.

Section 13.3 The Bit-Parallel Approach to Find
[image: image267.wmf]k

R

The bit-parallel approach to find
[image: image268.wmf]k

R

 is quite similar to that of finding
[image: image269.wmf]0

R

. First of all, rule stipulated in Equation (13.2-5) is still needed. That is, we need the following formula:

[image: image270.wmf])

1

)

1

,

1

(

(

and

(

))

,

(

&

)

1

(

1

=

-

-

=

>>

-

j

i

R

p

t

P

t

IV

R

k

j

i

i

k

i

In the above formula the term
[image: image271.wmf]1

10

-

m

 is temporarily ignored. We shall see that it is restored in the final formula expressed in Equation (13.3-1)

Besides, the following rules are used for insertion, deletion and substitution:

Rule 13.3-1: The Insertion Rule for the Bit-Parallel Approach for
[image: image272.wmf]k

i

R

.
(1) Insertion: From Equation (13.1-11), we know that we must test whether
[image: image273.wmf]1

)

,

1

(

1

=

-

-

j

i

R

k

.
To test whether
[image: image274.wmf]1

)

,

1

(

1

=

-

-

j

i

R

k

, we use
[image: image275.wmf]1

1

-

-

k

i

R

Example 13.3-1

Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-1 and Table 13.3-2 respectively as follows.

Table 13.3-1
[image: image276.wmf]0

R

 for
[image: image277.wmf]gac

aacaagaaca

T

=

 and
[image: image278.wmf]aacag

P

=

.

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

Table 13.3-2 An illustration of
[image: image279.wmf]1

R

 for
[image: image280.wmf]gac

aacaagaaca

T

=

 and
[image: image281.wmf]aacag

P

=

.
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	a
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	c
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1

	4
	a
	0
	0
	0
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0

	5
	g
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	0

Consider
[image: image282.wmf]4

=

i

. Then
[image: image283.wmf]3

1

=

-

i

.

[image: image284.wmf])

00100

(

0

3

=

R

From the above vector, we can see that
[image: image285.wmf]1

)

3

,

4

(

1

=

R

 due to an insertion. As seen in Table 13.3-2, this is correct.

Rule 13.3-2: The Deletion Rule for the Bit-Parallel Approach for
[image: image286.wmf]k

i

R

(2) From Equation (13.1-12), we know that we must test whether
[image: image287.wmf]1

)

1

,

(

1

=

-

-

j

i

R

k

. To test whether
[image: image288.wmf]1

)

1

,

(

1

=

-

-

j

i

R

k

, we use
[image: image289.wmf])

10

(

)

1

(

1

1

-

-

Ú

>>

m

k

i

R

Example 13.3-2

Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-3 and Table 13.3-4 respectively.

Table 13.3-3
[image: image290.wmf]0

R

 for
[image: image291.wmf]gac

aacaagaaca

T

=

 and
[image: image292.wmf]aacag

P

=

.

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

Table 13.3-4 An illustration of
[image: image293.wmf]1

R

 for
[image: image294.wmf]gac

aacaagaaca

T

=

 and
[image: image295.wmf]aacag

P

=

.
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	a
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	c
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1

	4
	a
	0
	0
	0
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0

	5
	g
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	0

Consider
[image: image296.wmf].

3

=

i

 In this case,
[image: image297.wmf])

10010

(

)

10000

(

)

1

(

0

3

=

Ú

>>

R

From the above vector, we conclude
[image: image298.wmf]1

)

4

,

3

(

1

=

R

 due to a deletion. This is correct as seen in Table 13.3-4.

We now come to the substitution case.

Rule 13.3-3: From Equation (13.1-10), we know that we must test whether
[image: image299.wmf]1

)

1

,

1

(

1

=

-

-

-

j

i

R

k

. To test whether
[image: image300.wmf]1

)

1

,

1

(

1

=

-

-

-

j

i

R

k

, we use
[image: image301.wmf])

10

(

)

1

(

1

1

1

-

-

-

Ú

>>

m

k

i

R

Example 13.3-3

Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-5 and Table 13.3-6 respectively.
Table 13.3-5
[image: image302.wmf]0

R

 for
[image: image303.wmf]gac

aacaagaaca

T

=

 and
[image: image304.wmf]aacag

P

=

.

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

Table 13.3-6 An illustration of
[image: image305.wmf]1

R

 for
[image: image306.wmf]gac

aacaagaaca

T

=

 and
[image: image307.wmf]aacag

P

=

.
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	a
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	c
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1

	4
	a
	0
	0
	0
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0

	5
	g
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	0

Consider
[image: image308.wmf]6

=

i

. In this case,
[image: image309.wmf]5

1

=

-

i

 and
[image: image310.wmf])

11100

(

)

10

(

)

1

(

1

0

5

=

Ú

>>

-

m

R

. From the above vector, we have
[image: image311.wmf]1

)

3

,

6

(

)

2

,

6

(

1

1

=

=

R

R

 due to substitutions. As can be seen from Table 13.3-6, the solution is correct.

We may implement the three operations into one single formula as follows:

Rule 13.3-4: The Rule for the Bit-Parallel Approach to Find
[image: image312.wmf]k

i

R

 for
[image: image313.wmf]1

³

k

.

[image: image314.wmf]1

1

1

1

1

1

1

10

)

on

substituti

(

)

1

(

)

deletion

(

)

1

(

)

insertion

(

)

(

))

1

)

1

,

1

(

(

and

(

))

,

(

&

)

1

((

-

-

-

-

-

-

-

Ú

>>

Ú

>>

Ú

Ú

=

-

-

=

>>

=

m

k

i

k

i

k

i

k

j

i

i

k

i

k

i

R

R

R

j

i

R

p

t

P

t

IV

R

R

 (13.3-1)

Let us try to explain the physical meaning of Equation (13.3-1) as follows:

1. The meaning of
[image: image315.wmf]))

,

(

&

)

1

((

1

P

t

IV

R

i

k

i

>>

-

: If
[image: image316.wmf]k

j

i

ed

p

t

j

i

£

-

-

=

)

1

,

1

(

and

1

, then
[image: image317.wmf]k

j

i

ed

£

)

,

(

1

.

2. The meaning of
[image: image318.wmf]1

1

-

-

k

i

R

: If
[image: image319.wmf]1

)

,

1

(

1

-

£

-

k

j

i

ed

,
[image: image320.wmf]k

j

i

ed

£

)

,

(

1

 by insertion.
3. The meaning of
[image: image321.wmf]1

1

>>

-

k

i

R

: If
[image: image322.wmf]1

)

1

,

(

1

-

£

-

k

j

i

ed

,
[image: image323.wmf]k

j

i

ed

£

)

,

(

1

 by deletion.

4. The meaning of
[image: image324.wmf]1

1

1

>>

-

-

k

i

R

: If
[image: image325.wmf]1

)

1

,

1

(

1

-

£

-

-

k

j

i

ed

,
[image: image326.wmf]k

j

i

ed

£

)

,

(

1

 by substitution.

5. The meaning of
[image: image327.wmf]1

10

-

m

: This makes sure that
[image: image328.wmf]1

)

1

,

(

1

=

i

ed

 for all
[image: image329.wmf]i

. That
[image: image330.wmf]1

)

1

,

(

1

=

i

ed

 for all
[image: image331.wmf]i

 is due to the special property that
[image: image332.wmf]1

)

1

,

(

1

=

i

ed

 for all
[image: image333.wmf]i

 if
[image: image334.wmf]1

³

k

.

The beauty of Equation (13.3-1) is that we do not have to worry about the dynamic programming tables for insertion, deletion and substitution any more. Instead, we only make use of
[image: image335.wmf]1

1

1

1

,

,

-

-

-

-

k

i

k

i

k

i

R

R

R

and
[image: image336.wmf])

,

(

P

t

IV

i

 to produce
[image: image337.wmf]k

i

R

.

Example 13.3-4
Let us redisplay Table 13.1-1 and Table 13.1-2 as Table 13.3-7 and Table 13.3-8 respectively.
Table 13.3-7
[image: image338.wmf]0

R

 for
[image: image339.wmf]gac

aacaagaaca

T

=

 and
[image: image340.wmf]aacag

P

=

.

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	0
	1
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0

	2
	a
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	3
	c
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	4
	a
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0

	5
	g
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

Table 13.3-8
[image: image341.wmf]1

R

 for
[image: image342.wmf]gac

aacaagaaca

T

=

 and
[image: image343.wmf]aacag

P

=

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	a
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	c
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1

	4
	a
	0
	0
	0
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0
	0

	5
	g
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	0

[image: image344.wmf]1

1

1

1

1

1

1

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

-

-

-

-

-

-

-

Ú

>>

Ú

>>

Ú

Ú

>>

=

m

k

i

k

i

k

i

i

k

i

k

i

R

R

R

P

t

IV

R

R

[image: image345.wmf].

11111

10000

01001

01100

10010

01010

10000

)

01001

(

)

01100

(

)

10010

(

)

11010

&

01111

(

10000

)

1

10010

(

)

1

11000

(

)

10010

(

)

11010

&

)

1

11111

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

4

0

4

0

5

0

4

1

4

1

5

1

1

1

5

1

1

5

1

1

1

5

5

1

1

5

1

5

=

Ú

Ú

Ú

Ú

=

Ú

Ú

Ú

Ú

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

-

-

-

-

-

-

-

R

R

R

P

a

IV

R

R

R

R

P

t

IV

R

R

[image: image346.wmf].

11010

10000

00000

01000

00000

01010

10000

)

00000

(

)

01000

(

)

00000

(

)

11010

&

01110

(

10000

)

1

00000

(

)

1

10000

(

)

00000

(

)

11010

&

)

1

11101

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

4

0

6

0

7

0

6

1

6

1

5

1

1

1

7

1

1

7

1

1

1

7

7

1

1

7

1

7

=

Ú

Ú

Ú

Ú

=

Ú

Ú

Ú

Ú

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

-

-

-

-

-

-

-

R

R

R

P

a

IV

R

R

R

R

P

t

IV

R

R

Based upon
[image: image347.wmf]1

R

, we may obtain
[image: image348.wmf]2

R

 as shown in Table 13.3-9
Table 13.3-9
[image: image349.wmf]2

R

 for
[image: image350.wmf]gac

aacaagaaca

T

=

 and
[image: image351.wmf]aacag

P

=

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	
	
	
	a
	a
	c
	a
	a
	g
	a
	a
	c
	a
	g
	a
	c

	0
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	1
	a
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	a
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	c
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	4
	a
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	5
	g
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

[image: image352.wmf]1

1

1

1

1

1

1

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

-

-

-

-

-

-

-

Ú

>>

Ú

>>

Ú

Ú

>>

=

m

k

i

k

i

k

i

i

k

i

k

i

R

R

R

P

t

IV

R

R

[image: image353.wmf].

11110

10000

01100

01110

11000

01010

10000

)

01100

(

)

01110

(

)

11000

(

)

11010

&

01110

(

10000

)

1

11000

(

)

1

11100

(

)

11000

(

)

11010

&

)

1

11100

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

4

1

1

1

2

1

1

2

1

1

5

1

2

1

2

1

2

2

1

2

1

2

2

2

1

2

2

2

=

Ú

Ú

Ú

Ú

=

Ú

Ú

Ú

Ú

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

-

-

-

-

-

-

-

R

R

R

P

a

IV

R

R

R

R

P

t

IV

R

R

[image: image354.wmf].

11111

10000

01111

01101

11111

00001

10000

)

01111

(

)

01101

(

)

11111

(

)

00001

&

01111

(

10000

)

1

11111

(

)

1

11011

(

)

11111

(

)

00001

&

)

1

11111

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

10

)

1

(

)

1

(

)

(

))

,

(

&

)

1

((

4

1

10

1

11

1

10

2

10

1

5

1

2

1

11

1

2

11

1

2

1

11

11

2

1

11

2

11

=

Ú

Ú

Ú

Ú

=

Ú

Ú

Ú

Ú

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

Ú

>>

Ú

>>

Ú

Ú

>>

=

-

-

-

-

-

-

-

R

R

R

P

g

IV

R

R

R

R

P

t

IV

R

R

PAGE
13-13

_1313934963.unknown

_1429374675.unknown

_1429425032.unknown

_1429436815.unknown

_1429464990.unknown

_1429534785.unknown

_1430806082.unknown

_1438793301.unknown

_1438793338.unknown

_1438793233.unknown

_1430240307.unknown

_1430240627.unknown

_1429534904.unknown

_1430240263.unknown

_1429469592.unknown

_1429534637.unknown

_1429534725.unknown

_1429469619.unknown

_1429531480.unknown

_1429531579.unknown

_1429469607.unknown

_1429469353.unknown

_1429469399.unknown

_1429469088.unknown

_1429438066.unknown

_1429463743.unknown

_1429464945.unknown

_1429438511.unknown

_1429461879.unknown

_1429438450.unknown

_1429438482.unknown

_1429437805.unknown

_1429437821.unknown

_1429437693.unknown

_1429427127.unknown

_1429427399.unknown

_1429429640.unknown

_1429436480.unknown

_1429429254.unknown

_1429427251.unknown

_1429427397.unknown

_1429427398.unknown

_1429427396.unknown

_1429427158.unknown

_1429427207.unknown

_1429426313.unknown

_1429426875.unknown

_1429427030.unknown

_1429427047.unknown

_1429426893.unknown

_1429426345.unknown

_1429425520.unknown

_1429425771.unknown

_1429425289.unknown

_1429425501.unknown

_1429423151.unknown

_1429423609.unknown

_1429424533.unknown

_1429424577.unknown

_1429423891.unknown

_1429423186.unknown

_1429383182.unknown

_1429383215.unknown

_1429422904.unknown

_1429423035.unknown

_1429383242.unknown

_1429382878.unknown

_1429382974.unknown

_1429383169.unknown

_1429382682.unknown

_1429382541.unknown

_1429382564.unknown

_1429381795.unknown

_1319136572.unknown

_1426663254.unknown

_1429374101.unknown

_1429374512.unknown

_1429374525.unknown

_1429374581.unknown

_1429374331.unknown

_1429374354.unknown

_1429374460.unknown

_1429374255.unknown

_1426682248.unknown

_1426682674.unknown

_1426693371.unknown

_1429195696.unknown

_1426693402.unknown

_1426682833.unknown

_1426682918.unknown

_1426682540.unknown

_1426682657.unknown

_1426682457.unknown

_1426682487.unknown

_1426682360.unknown

_1426664401.unknown

_1426682057.unknown

_1426682169.unknown

_1426664479.unknown

_1426663405.unknown

_1426663968.unknown

_1426664285.unknown

_1426663630.unknown

_1426663366.unknown

_1319367487.unknown

_1319966077.unknown

_1320148899.unknown

_1426342991.unknown

_1426343042.unknown

_1404669027.unknown

_1319998068.unknown

_1319998097.unknown

_1319998052.unknown

_1319520602.unknown

_1319520688.unknown

_1319965761.unknown

_1319966016.unknown

_1319965777.unknown

_1319965754.unknown

_1319965747.unknown

_1319520667.unknown

_1319477722.unknown

_1319520577.unknown

_1319382341.unknown

_1319477713.unknown

_1319369654.unknown

_1319137048.unknown

_1319137170.unknown

_1319137227.unknown

_1319136940.unknown

_1319137001.unknown

_1319136911.unknown

_1319136654.unknown

_1318982537.unknown

_1319136432.unknown

_1319136537.unknown

_1319136485.unknown

_1319136511.unknown

_1319136461.unknown

_1318982556.unknown

_1319136350.unknown

_1319136387.unknown

_1318982564.unknown

_1318982545.unknown

_1313935474.unknown

_1318844903.unknown

_1318951659.unknown

_1318982527.unknown

_1318845045.unknown

_1318845086.unknown

_1318844954.unknown

_1313935602.unknown

_1313935672.unknown

_1313935483.unknown

_1313935082.unknown

_1313935305.unknown

_1313935081.unknown

_1313932851.unknown

_1313934834.unknown

_1313934930.unknown

_1313934956.unknown

_1313934957.unknown

_1313934943.unknown

_1313934948.unknown

_1313934851.unknown

_1313934864.unknown

_1313934901.unknown

_1313934841.unknown

_1313934676.unknown

_1313934792.unknown

_1313934828.unknown

_1313934746.unknown

_1313934191.unknown

_1313934472.unknown

_1313934197.unknown

_1313934443.unknown

_1313934075.unknown

_1313934165.unknown

_1313932907.unknown

_1313933998.unknown

_1311139123.unknown

_1311145781.unknown

_1311158393.unknown

_1311158551.unknown

_1311158698.unknown

_1311159042.unknown

_1311165955.unknown

_1311178662.unknown

_1311182634.unknown

_1311233081.unknown

_1311182615.unknown

_1311178513.unknown

_1311160117.unknown

_1311160136.unknown

_1311160107.unknown

_1311158872.unknown

_1311158903.unknown

_1311158826.unknown

_1311158569.unknown

_1311158663.unknown

_1311158677.unknown

_1311158589.unknown

_1311158625.unknown

_1311158563.unknown

_1311158508.unknown

_1311158527.unknown

_1311158522.unknown

_1311158460.unknown

_1311158469.unknown

_1311158490.unknown

_1311158445.unknown

_1311146896.unknown

_1311158170.unknown

_1311158293.unknown

_1311158375.unknown

_1311148657.unknown

_1311148906.unknown

_1311157509.unknown

_1311157568.unknown

_1311149349.unknown

_1311148742.unknown

_1311147017.unknown

_1311147068.unknown

_1311146978.unknown

_1311145973.unknown

_1311146083.unknown

_1311146200.unknown

_1311146624.unknown

_1311146043.unknown

_1311146062.unknown

_1311145849.unknown

_1311143272.unknown

_1311143535.unknown

_1311143664.unknown

_1311145456.unknown

_1311143627.unknown

_1311143414.unknown

_1311143487.unknown

_1311143412.unknown

_1311140863.unknown

_1311143219.unknown

_1311143258.unknown

_1311141146.unknown

_1311139234.unknown

_1311140798.unknown

_1311139162.unknown

_1311139198.unknown

_1310739999.unknown

_1311138961.unknown

_1311139054.unknown

_1311139091.unknown

_1311139011.unknown

_1310834740.unknown

_1310834779.unknown

_1310740000.unknown

_1310737681.unknown

_1310739848.unknown

_1310739879.unknown

_1310739815.unknown

_1310737517.unknown

_1310737569.unknown

_1310737419.unknown

_1310737481.unknown

_1310737374.unknown

