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Chapter 1:  Definitions of String Matching Problems
In string matching problems, there are a text 
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.  We shall consider two different kinds of string matching problems:  Exact string matching problem and approximate string matching problems.

Section 1.1  The Exact String Matching Problem
Definition 1.1-1 The Exact String Problem

For the exact string matching problem, we are given a text 
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. Our job is to find whether 
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 appears in 
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 and if it does, where it appears.
Example 1.1-1

We are given 
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aaccgtcacc
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 and 
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.  We would find 
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 does appear in 
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 as shown below:




T=aaccgtcaccggt
Example 1.1-2


We are given 
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aaccgtcacc
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 and 
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P

=

.  In this case, we will find out that 
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 does not appear in 
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There are many algorithms developed to solve this exact string matching problem and we shall present them in Part I of this book.  Although there are a large number of such algorithms, we have found that they are nearly all based upon some general rules.  This book is organized by stating these rules.  By this approach, the reader can more clearly understand the basic principles of the algorithms.
Section 1.2  The Approximate String Matching Problem
For the approximate string matching problem, we first define a distance function called edit distance which measures the similarity between two strings.  Given a string 
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 by three operations:  deletions, insertions and substitutions.  Throughout this book, without losing generality, we assume that the operations are on 
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Deletion Operation. 


Let 
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 in location 4 and 
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	1
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	3
	4
	5
	6
	7
	8

	S1
	=
	a
	a
	c
	-
	-
	g
	t
	

	S2
	=
	a
	a
	c
	c
	g
	g
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Insertion Operation

Let 
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.  We may insert a and g at locations 2 and 5 respectively into 
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 as shown below:
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	S1
	=
	a
	a
	c
	t
	g
	t

	S2
	=
	a
	-
	c
	t
	-
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	a
	
	
	g
	


Substitution Operation

Let 
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S

=

1

 and 
[image: image42.wmf]abctatt
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.  Then we may transform 
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 by the following substitution operations at locations 2 and 5.  Note that in location 2, b is substituted by a and in location 5, a is substituted by g.
	
	
	1
	2
	3
	4
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	7
	8

	S1
	=
	a
	a
	c
	t
	g
	t
	t
	

	S2
	=
	a
	b
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Example 1.2-1

Let 
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 can be transformed into 
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 through the following operations:
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The operations are as follows:

1.deleting 
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 at location 3 ,

 
2. inserting 
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 at location 6,


3. substituting 
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 at location 7 by 
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,


4. deleting t at location 12,


5. substituting t at location 14 by g,

and 6. inserting c at location 16.

Thus there are totally 6 operations, including 2 deletions, 2 insertions and 2 substitutions.  

Having defined these operations, we may now define edit distance as follows:

Definition 1.2-1 Edit Distance
The edit distance between two strings 
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Example 1.2-2
Let 
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 can be transformed into 
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 through the following operations:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	S1
	=
	a
	a
	g
	t
	t
	-
	c
	g
	t
	a

	S2
	=
	a
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	t
	t
	a
	c
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	g
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As we can see, the operations are:
1. inserting 
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 at location 3,

2. deleting 
[image: image65.wmf]a

 at location 6,

3. substituting 
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 by 
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 at location 8
and
4. inserting 
[image: image68.wmf]t

 at location 9


In this case, we perform 4 operations and it can be proved that this number is minimal.  Thus the edit distance between 
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 and 
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 is 4.


Edit distance can be viewed as a measurement of the similarity between two strings.  If the edit distance is small, it means that these two strings are similar to each other and quite different if otherwise.  If edit distance is zero, these two strings are identical.  The edit distance is basically found by dynamic programming.  We shall elaborate this in later chapters.

Definition 1.2-2  Hamming Distance

A special version of edit distance only considers the substitution.  This is called the Hamming distance.  
We can see that the Hamming distance is much easier to find and only a few algorithms use Hamming distance.
Two Kinds of Approximate String Matching Problems

The approximate string matching problem is based upon the edit distance function.  There are two kinds of approximate string matching problems.  We shall call them Approximate Problem 1 and Approximate Problem 2.
Definition 1.2-3  Approximate String Matching Problem 1

Approximate String Matching Problem 1:  Given a text 
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Example 1.2-3

Let 
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(1). At location 4 of 
[image: image84.wmf]T

, there are substrings 
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 and 
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 ending at this location whose edit distances with 
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 are smaller than or equal to 
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(2). At location 6 of 
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, there is substring 
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 satisfying the condition.

(3). At location 7 of 
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, there is substring 
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 satisfying the condition.
(4). At location 8 of 
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, there are substrings 
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 and 
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 satisfying the condition.
Definition 1.2-4  Approximate String Matching Problem 2

Approximate String Matching Problem 2:  Given a text 
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 a pattern 
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 and a prespecified positive integer 
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Example 1.2-4.

Let 
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Example 1.2-5.

Let 
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 whose edit distance with 
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 is less than or equal to 
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Note that in Approximate Problem 1, it is not required to find substrings satisfying our conditions.  We only have to find the locations.

In this book, exact string matching algorithms are presented in Part I and approximate string matching algorithms are presented in Part II.  Again, we have successfully found some basic rules for developing approximate string matching algorithms and we shall present the algorithms based upon the rules which we have found.
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