Exact and Approximate String Matching Algorithms
R. C. T. Lee
K. H. Chen

C. W. Lu
C. S. Ou
Y. K. Shieh

Table of Contents
Chapter 1 Definitions of String Matching Algorithms

Section 1.1 The Exact String Matching Problem

Section 1.2 The Approximate String Matching problem

Section 1.3 References

Part I Exact String Matching Algorithms

Chapter 2 The Exact String Matching Algorithm Based upon the Convolution Method

Section 2.1 The Window Sliding Method

Section 2.2 The Discrete Convolution

Section 2.3 The Application of Discrete Convolution to the Exact String Matching Problem

Section 2.4 The Bit-Parallel Approach of the Application of Convolution to Exact String Matching
Section 2.5 The Integer Multiplication Approach to Implement Discrete Convolution

Section 2.6 The Fourier Transform Approach to Implement Discrete Convolution

Section 2.7 The Prefix Finding and the Discrete Convolution Techniques for Exact String Matching

Section 2.8 The Probability of a String Matching Approach in Another String

Section 2.9 Discrete Convolution Method with Early Termination

Section 2.10 An Elimination Oriented Exact String Matching Algorithm Derived from the Prefix Finding Concept

Section 2.11 The Relationship between the BG Algorithm and the Convolution Method

Section 2.12 References

Chapter 3 The Exact String Matching Algorithm Based upon the Suffix Tree Method

Section 3.1 Prefix and Suffix

Section 3.2 The Suffix Tree

Section 3.3 The Construction of Suffix Trees

Section 3.4 The Suffix Array

Section 3.5 References

Chapter 4 Rule E2, Rule E2-1 and the Reverse Factor Algorithm

Section 4.1 Rule E1: The Substring Matching Rule

Section 4.2 Rule E2-1 The Suffix to Prefix Rule

Section 4.3 Method 1: the Chu’s Method to Solve the
[image: image1.wmf])

,

(

Y

X

LSP

 finding Problem

Section 4.4 Method 2:: The Suffix Tree Method to Solve
[image: image2.wmf])

,

(

Y

X

LSP

 finding Problem

Section 4.5 Method 3: The Bit-Parallel Method to Solve
[image: image3.wmf])

,

(

Y

X

LSP

 finding Problem

Section 4.6 Method 4: The Convolution Method to Solve
[image: image4.wmf])

,

(

Y

X

LSP

 finding Problem

Section 4.7 The Reverse Factor Algorithm Based on Rule E2-1
Section 4.8 An Average Analysis of the Reverse Factor Algorithm

Section 4.9 A Further Improvement of the Reverse Factor Algorithm

Section 4.10 The Reverse Factor Algorithm with the Filtering Concept.

Section 4.11 Another Improved Algorithm Which Avoids the Repeating Examination of Characters

Section 4.12 References

Chapter 5 Rule E2-2 and the Horspool Algorithm

Section 5.1 Rule E2-2: The 1-Suffix Rule

Section 5.2 The Horspool Algorithm

Section 5.3 The Time-Complexity of the Horspool Algorithm

Section 5.4

Chapter 6 The MP and KMP Algorithms Based upon Rule E2-1

Section 6.1 The Morris-Pratt Algorithm (MP Algorithm)

Section 6.2 The Knuth- Morris-Pratt Algorithm (KMP Algorithm)

Section 6.3 The Simon Allgorithm

Section 6.4 The Time-Complexity Analysis of the KMP Algorithm

Section 6.5 The Improved KMP Algorithm

Section 6.6 References

Chapter 7 The Boyer and Moore Algorithm Based upon Rule E3

Section 7.1 The Basic Idea of the Boyer and Moore Algorithm

Section 7.2 The Good Suffix Rule 1 of the Boyer and Moore Algorithm: An Application of Rule E2.

Section 7.3 The Bad Character Rule of the Boyer and Moore Algorithm: Another Application of Rule E2
Chapter 8 Algorithms with Selective Scanning Order

Chapter 9 The Wide Window Approach

Part II Approximate String Matching Algorithms

Chapter 10 The Edit Distance

Chapter 11 The Two Types of Approximate String Matching Problems and the Seller’s Algorithm to Solve Problem 1

Chapter 12 The LV Algorithm and the U Algorithm to Solve Problem 1 Which Are Based upon Rule A1

Chapter 13 The WM1 Algorithm for Problem 1, a Bit-Parallel Approximate String Matching Algorithm

Chapter 14 Another Bit-Parallel Approach to Solve Problem 1: the Myers Algorithm

Chapter 15 The WM2 Algorithm, the NB Algorithm Based upon Rules A2 and A3 to Solve Problem 1

Chapter 16 The Error Pattern Approach to Solve Problem 2 by Turning It into an Exact String Matching Problem

Chapter 17 The FN Algorithm Based upon Rules A3 and A4 and the Filtering Concept to Solve Problem 2

Chapter 18 The Ukkonen Algorithm and the Lu Algorithm Based upon Filtering Concept for Problem 1

Chapter 19 The TU Algorithm to Solve Problem 1

Chapter 20 The HN Filtering and Bit-Parallel Algorithm

Chapter 1: Definitions of String Matching Problems
In string matching problems, there are a text
[image: image5.wmf]n

t

t

t

T

L

2

1

=

 and a pattern
[image: image6.wmf]m

p

p

p

P

L

2

1

=

 where both
[image: image7.wmf]i

t

’s and
[image: image8.wmf]i

p

’s are characters. Throughout this book, we assume that
[image: image9.wmf]n

m

£

. We denote
[image: image10.wmf]j

i

i

t

t

t

L

1

+

 by
[image: image11.wmf])

,

(

j

i

T

. We shall consider two different kinds of string matching problems: Exact string matching problem and approximate string matching problems.

Section 1.1 The Exact String Matching Problem
Definition 1.1-1 The Exact String Problem

For the exact string matching problem, we are given a text
[image: image12.wmf]n

t

t

t

T

L

2

1

=

 and a pattern
[image: image13.wmf]m

p

p

p

P

L

2

1

=

. Our job is to find whether
[image: image14.wmf]P

 appears in
[image: image15.wmf]T

 and if it does, where it appears.
Example 1.1-1

We are given
[image: image16.wmf]ggt

aaccgtcacc

T

=

 and
[image: image17.wmf]acc

P

=

. We would find
[image: image18.wmf]P

 does appear in
[image: image19.wmf]T

 as shown below:

T=aaccgtcaccggt
Example 1.1-2

We are given
[image: image20.wmf]ggt

aaccgtcacc

T

=

 and
[image: image21.wmf]gcc

P

=

. In this case, we will find out that
[image: image22.wmf]P

 does not appear in
[image: image23.wmf]T

.

There are many algorithms developed to solve this exact string matching problem and we shall present them in Part I of this book. Although there are a large number of such algorithms, we have found that they are nearly all based upon some general rules. This book is organized by stating these rules. By this approach, the reader can more clearly understand the basic principles of the algorithms.
Section 1.2 The Approximate String Matching Problem
For the approximate string matching problem, we first define a distance function called edit distance which measures the similarity between two strings. Given a string
[image: image24.wmf]1

S

 and a string
[image: image25.wmf]2

S

, we can transform
[image: image26.wmf]2

S

 to
[image: image27.wmf]1

S

 by three operations: deletions, insertions and substitutions. Throughout this book, without losing generality, we assume that the operations are on
[image: image28.wmf]2

S

.
Deletion Operation.

Let
[image: image29.wmf]aacgt

S

=

1

 and
[image: image30.wmf]aaccggt

S

=

2

. We may delete
[image: image31.wmf]c

 in location 4 and
[image: image32.wmf]g

 in location 5 from
[image: image33.wmf]2

S

. Then after these two deletion operations as illustrated below, we can transform
[image: image34.wmf]2

S

 to
[image: image35.wmf]1

S

:
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	S1
	=
	a
	a
	c
	-
	-
	g
	t
	

	S2
	=
	a
	a
	c
	c
	g
	g
	t
	

Insertion Operation

Let
[image: image36.wmf]aactgt

S

=

1

 and
[image: image37.wmf]actt

S

=

2

. We may insert a and g at locations 2 and 5 respectively into
[image: image38.wmf]2

S

 to transform
[image: image39.wmf]2

S

 to
[image: image40.wmf]1

S

 as shown below:
	
	
	1
	2
	3
	4
	5
	6

	S1
	=
	a
	a
	c
	t
	g
	t

	S2
	=
	a
	-
	c
	t
	-
	t

	
	
	
	a
	
	
	g
	

Substitution Operation

Let
[image: image41.wmf]aactgtt

S

=

1

 and
[image: image42.wmf]abctatt

S

=

2

. Then we may transform
[image: image43.wmf]2

S

 to
[image: image44.wmf]1

S

 by the following substitution operations at locations 2 and 5. Note that in location 2, b is substituted by a and in location 5, a is substituted by g.
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	S1
	=
	a
	a
	c
	t
	g
	t
	t
	

	S2
	=
	a
	b
	c
	t
	a
	t
	t
	

	
	
	
	a
	
	
	g
	
	
	

Example 1.2-1

Let
[image: image45.wmf]agacg

aagttctatt

S

=

1

 and
[image: image46.wmf]tatag

aacgtatatt

S

=

2

.
[image: image47.wmf]2

S

 can be transformed into
[image: image48.wmf]1

S

 through the following operations:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	S1
	=
	a
	a
	-
	g
	t
	t
	c
	t
	a
	t
	t
	-
	a
	g
	a
	c
	g

	S2
	=
	a
	a
	c
	g
	t
	-
	a
	t
	a
	t
	t
	t
	a
	t
	a
	-
	g

	
	
	
	
	
	
	
	t
	c
	
	
	
	
	
	
	g
	
	c
	

The operations are as follows:

1.deleting
[image: image49.wmf]c

 at location 3 ,

2. inserting
[image: image50.wmf]t

 at location 6,

3. substituting
[image: image51.wmf]a

 at location 7 by
[image: image52.wmf]c

,

4. deleting t at location 12,

5. substituting t at location 14 by g,

and 6. inserting c at location 16.

Thus there are totally 6 operations, including 2 deletions, 2 insertions and 2 substitutions.

Having defined these operations, we may now define edit distance as follows:

Definition 1.2-1 Edit Distance
The edit distance between two strings
[image: image53.wmf]1

S

 and
[image: image54.wmf]2

S

 is the minimum number of deletions, insertions and substitutions needed to transform
[image: image55.wmf]2

S

 to
[image: image56.wmf]1

S

. The edit distance between
[image: image57.wmf]1

S

 and
[image: image58.wmf]2

S

 is denoted as
[image: image59.wmf])

,

(

2

1

S

S

ED

.
Example 1.2-2
Let
[image: image60.wmf]aagttcgta

S

=

1

 and
[image: image61.wmf]aattacaa

S

=

2

. Then
[image: image62.wmf]2

S

 can be transformed into
[image: image63.wmf]1

S

 through the following operations:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	S1
	=
	a
	a
	g
	t
	t
	-
	c
	g
	t
	a

	S2
	=
	a
	a
	-
	t
	t
	a
	c
	a
	-
	a

	
	
	
	
	g
	
	
	
	
	g
	t
	

As we can see, the operations are:
1. inserting
[image: image64.wmf]g

 at location 3,

2. deleting
[image: image65.wmf]a

 at location 6,

3. substituting
[image: image66.wmf]a

 by
[image: image67.wmf]g

 at location 8
and
4. inserting
[image: image68.wmf]t

 at location 9

In this case, we perform 4 operations and it can be proved that this number is minimal. Thus the edit distance between
[image: image69.wmf]1

S

 and
[image: image70.wmf]2

S

 is 4.

Edit distance can be viewed as a measurement of the similarity between two strings. If the edit distance is small, it means that these two strings are similar to each other and quite different if otherwise. If edit distance is zero, these two strings are identical. The edit distance is basically found by dynamic programming. We shall elaborate this in later chapters.

Definition 1.2-2 Hamming Distance

A special version of edit distance only considers the substitution. This is called the Hamming distance.
We can see that the Hamming distance is much easier to find and only a few algorithms use Hamming distance.
Two Kinds of Approximate String Matching Problems

The approximate string matching problem is based upon the edit distance function. There are two kinds of approximate string matching problems. We shall call them Approximate Problem 1 and Approximate Problem 2.
Definition 1.2-3 Approximate String Matching Problem 1

Approximate String Matching Problem 1: Given a text
[image: image71.wmf]T

, a pattern
[image: image72.wmf]P

 and a prespecified positive integer
[image: image73.wmf]k

, find every location
[image: image74.wmf]i

 in
[image: image75.wmf]T

 such that there is a substring
[image: image76.wmf]S

 of
[image: image77.wmf]T

 which ends at location
[image: image78.wmf]i

 such that
[image: image79.wmf]k

P

S

ED

£

)

,

(

.
Example 1.2-3

Let
[image: image80.wmf]aagtcggtac

T

=

,
[image: image81.wmf]cgt

P

=

 and
[image: image82.wmf]1

=

k

. We can now see that there are three locations in
[image: image83.wmf]T

, namely locations 4, 7 and 8, satisfying the conditions.

(1). At location 4 of
[image: image84.wmf]T

, there are substrings
[image: image85.wmf]agt

 and
[image: image86.wmf]gt

 ending at this location whose edit distances with
[image: image87.wmf]P

 are smaller than or equal to
[image: image88.wmf]1

=

k

.

(2). At location 6 of
[image: image89.wmf]T

, there is substring
[image: image90.wmf]cg

 satisfying the condition.

(3). At location 7 of
[image: image91.wmf]T

, there is substring
[image: image92.wmf]cgg

 satisfying the condition.
(4). At location 8 of
[image: image93.wmf]T

, there are substrings
[image: image94.wmf]cggt

,
[image: image95.wmf]ggt

 and
[image: image96.wmf]gt

 satisfying the condition.
Definition 1.2-4 Approximate String Matching Problem 2

Approximate String Matching Problem 2: Given a text
[image: image97.wmf]T

 a pattern
[image: image98.wmf]P

 and a prespecified positive integer
[image: image99.wmf]k

, find all substrings
[image: image100.wmf]S

’s in
[image: image101.wmf]T

such that
[image: image102.wmf]k

P

S

ED

£

)

,

(

.
Example 1.2-4.

Let
[image: image103.wmf]aagtcggtac

T

=

,
[image: image104.wmf]ggt

P

=

 and
[image: image105.wmf]1

=

k

. Then we can find five substrings in
[image: image106.wmf]T

, namely
[image: image107.wmf]agt

S

S

=

=

)

4

,

2

(

1

,
[image: image108.wmf]gt

S

S

=

=

)

4

,

3

(

2

,
[image: image109.wmf]gg

S

S

=

=

)

7

,

6

(

3

,
[image: image110.wmf]ggt

S

S

=

=

)

8

,

6

(

4

, and
[image: image111.wmf]gt

S

S

=

=

)

8

,

7

(

5

 as our solution. Note that
[image: image112.wmf]k

P

S

ED

=

=

1

)

,

(

1

 and
[image: image113.wmf]k

P

S

ED

<

=

0

)

,

(

4

.

Example 1.2-5.

Let
[image: image114.wmf]aagtcggtac

T

=

,
[image: image115.wmf]ttt

P

=

 and
[image: image116.wmf]1

=

k

. Then we cannot find any substring in
[image: image117.wmf]T

 whose edit distance with
[image: image118.wmf]P

 is less than or equal to
[image: image119.wmf]k

.
Note that in Approximate Problem 1, it is not required to find substrings satisfying our conditions. We only have to find the locations.

In this book, exact string matching algorithms are presented in Part I and approximate string matching algorithms are presented in Part II. Again, we have successfully found some basic rules for developing approximate string matching algorithms and we shall present the algorithms based upon the rules which we have found.
Section 1.3 References
The following is a list of references on string matching algorithms.

[CHL07]: Crochemore, M., Hancart, C. and Lecroq, T. Algorithms on Strings, Cambridge University Press, Cambridge, England, 2007.
[CR94]: Crochemore, M. and Rytter, W. Text Algorithms, Oxford University Press, N. Y. 1994.

[CR02]: Crochemore, M. and Rytter, W. Jewels of Stringology, World Scientific Press, Singapore, Singapore, 2002
[G97]: Gusfield, P. M. Algorithms on Strings, Trees and Sequences, Cambridge University Press, Cambridge, England 1997.

[L66]: Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 1996, Vol. 10, No. 8, pp. 707 - 710.
[NR02]: Navarro, G. and Raffinot, M. Flexible Pattern Matching in Strings, Practical On-Line Search Algorithms for Texts and Biological Sequences, Cambridge University Press, Cambridge, England, 2002.

[S01]: Szpankowski, W. Average Case Analysis of Algorithms on Sequences, Wiley Interscience, N.Y. 2001.

PAGE
1-10

_1293218894.unknown

_1293640775.unknown

_1293644627.unknown

_1296823283.unknown

_1296823500.unknown

_1297174343.unknown

_1297174601.unknown

_1436898349.unknown

_1409548888.unknown

_1297174493.unknown

_1297174516.unknown

_1297174520.unknown

_1297174368.unknown

_1296823709.unknown

_1296978082.unknown

_1296823656.unknown

_1296823672.unknown

_1296823472.unknown

_1296823483.unknown

_1296823377.unknown

_1293646835.unknown

_1293646874.unknown

_1293644654.unknown

_1293641117.unknown

_1293643343.unknown

_1293643959.unknown

_1293644493.unknown

_1293643718.unknown

_1293642927.unknown

_1293643255.unknown

_1293643329.unknown

_1293642991.unknown

_1293642848.unknown

_1293641803.unknown

_1293642708.unknown

_1293642802.unknown

_1293641167.unknown

_1293641067.unknown

_1293641088.unknown

_1293640972.unknown

_1293605508.unknown

_1293622481.unknown

_1293636764.unknown

_1293636765.unknown

_1293622621.unknown

_1293633999.unknown

_1293636619.unknown

_1293633912.unknown

_1293633940.unknown

_1293622672.unknown

_1293622526.unknown

_1293621487.unknown

_1293622006.unknown

_1293605523.unknown

_1293603050.unknown

_1293605005.unknown

_1293605019.unknown

_1293603773.unknown

_1293604835.unknown

_1293603216.unknown

_1293218971.unknown

_1293218991.unknown

_1293218922.unknown

_1293082291.unknown

_1293082438.unknown

_1293082506.unknown

_1293082900.unknown

_1293082483.unknown

_1293082384.unknown

_1292959938.unknown

_1293082178.unknown

_1293082250.unknown

_1292959975.unknown

_1293082141.unknown

_1292959807.unknown

_1292959863.unknown

